A multiobjective optimization‐based calculation framework of maximum wind power penetration limit considering system transient stability

Summary This paper elaborates a novel optimum programming‐based algorithm that embeds the stochastic multiobjective particle swarm optimization (PSO) method and the deterministic interior point method to calculate the maximum wind power penetration level. With the optimization target of promoting th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International transactions on electrical energy systems 2020-08, Vol.30 (8), p.n/a
Hauptverfasser: Wang, Man, Qiu, Chendong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title International transactions on electrical energy systems
container_volume 30
creator Wang, Man
Qiu, Chendong
description Summary This paper elaborates a novel optimum programming‐based algorithm that embeds the stochastic multiobjective particle swarm optimization (PSO) method and the deterministic interior point method to calculate the maximum wind power penetration level. With the optimization target of promoting the wind generation capacity, the three‐stage optimization strategy is established to contemplate the transient stability constraint (TSC) as well as the uncertainty factors in the high wind penetrated system. To address the uncertainty factors in system, the chance‐constrained optimization approach is practiced to figure out the initial optimal operating point in the first stage. On the ground of which, the TSC is reinforced in the second stage to delineate the dynamic feasible region. Among the obtained security domain, the ultimate operation solution is calculated in the last stage and provides operators with specific operating scheme. The framework is capable of supporting alternative optimal methods and can be extended to more complex system modeling. The feasibility of the algorithm framework has been demonstrated by simulations on two benchmark systems. And it has prosperous application prospects for optimization problems that need to consider system dynamic security and uncertainty simultaneously.
doi_str_mv 10.1002/2050-7038.12465
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2433588045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2433588045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3575-9f26d6cb17ebc42ec27043aa5f897f9afa1d36a1c8a1c1bd75c4559be7ce057b3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYsouOievQY8dzdpm6Y9Lsv6Bxb0sJ5Dmk4la9vUJHWtJ8-e_Ix-ErNbEW8ODDM8fm8GXhBcEDwjGEfzCFMcMhxnMxIlKT0KJr_K8Z_9NJhau8W-8oQQlk2CjwVq-topXWxBOvUCSHdONepNeK39ev8shIUSSVHLvj5oqDKigZ02T0hXqBGvqukbtFNtiTq9A4M6aMGZka39KYekbq0qwaj2EdnBOmiQB7wGrUPWiULVyg3nwUklagvTn3kWPFytNsubcH13fbtcrEMZU0bDvIrSMpUFYVDIJAIZMZzEQtAqy1mVi0qQMk4FkZlvUpSMyoTSvAAmAVNWxGfB5Xi3M_q5B-v4Vvem9S95lMQxzTKcUE_NR0oaba2BindGNcIMnGC-z5zvU-X7VPkhc-9IR8dO1TD8h_PVZnU_Gr8BOv6JIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2433588045</pqid></control><display><type>article</type><title>A multiobjective optimization‐based calculation framework of maximum wind power penetration limit considering system transient stability</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Man ; Qiu, Chendong</creator><creatorcontrib>Wang, Man ; Qiu, Chendong</creatorcontrib><description>Summary This paper elaborates a novel optimum programming‐based algorithm that embeds the stochastic multiobjective particle swarm optimization (PSO) method and the deterministic interior point method to calculate the maximum wind power penetration level. With the optimization target of promoting the wind generation capacity, the three‐stage optimization strategy is established to contemplate the transient stability constraint (TSC) as well as the uncertainty factors in the high wind penetrated system. To address the uncertainty factors in system, the chance‐constrained optimization approach is practiced to figure out the initial optimal operating point in the first stage. On the ground of which, the TSC is reinforced in the second stage to delineate the dynamic feasible region. Among the obtained security domain, the ultimate operation solution is calculated in the last stage and provides operators with specific operating scheme. The framework is capable of supporting alternative optimal methods and can be extended to more complex system modeling. The feasibility of the algorithm framework has been demonstrated by simulations on two benchmark systems. And it has prosperous application prospects for optimization problems that need to consider system dynamic security and uncertainty simultaneously.</description><identifier>ISSN: 2050-7038</identifier><identifier>EISSN: 2050-7038</identifier><identifier>DOI: 10.1002/2050-7038.12465</identifier><language>eng</language><publisher>Hoboken: Hindawi Limited</publisher><subject>Algorithms ; Complex systems ; Computer simulation ; Constraints ; Feasibility ; maximum wind power penetration limit ; multiobjective OPF ; Multiple objective analysis ; Optimization ; Particle swarm optimization ; Penetration ; probabilistic optimal OPF ; Renewable energy ; Security ; Transient stability ; transient stability constrained OPF ; Uncertainty ; Wind power</subject><ispartof>International transactions on electrical energy systems, 2020-08, Vol.30 (8), p.n/a</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3575-9f26d6cb17ebc42ec27043aa5f897f9afa1d36a1c8a1c1bd75c4559be7ce057b3</citedby><cites>FETCH-LOGICAL-c3575-9f26d6cb17ebc42ec27043aa5f897f9afa1d36a1c8a1c1bd75c4559be7ce057b3</cites><orcidid>0000-0001-5491-1529 ; 0000-0002-3923-6358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2050-7038.12465$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2050-7038.12465$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Wang, Man</creatorcontrib><creatorcontrib>Qiu, Chendong</creatorcontrib><title>A multiobjective optimization‐based calculation framework of maximum wind power penetration limit considering system transient stability</title><title>International transactions on electrical energy systems</title><description>Summary This paper elaborates a novel optimum programming‐based algorithm that embeds the stochastic multiobjective particle swarm optimization (PSO) method and the deterministic interior point method to calculate the maximum wind power penetration level. With the optimization target of promoting the wind generation capacity, the three‐stage optimization strategy is established to contemplate the transient stability constraint (TSC) as well as the uncertainty factors in the high wind penetrated system. To address the uncertainty factors in system, the chance‐constrained optimization approach is practiced to figure out the initial optimal operating point in the first stage. On the ground of which, the TSC is reinforced in the second stage to delineate the dynamic feasible region. Among the obtained security domain, the ultimate operation solution is calculated in the last stage and provides operators with specific operating scheme. The framework is capable of supporting alternative optimal methods and can be extended to more complex system modeling. The feasibility of the algorithm framework has been demonstrated by simulations on two benchmark systems. And it has prosperous application prospects for optimization problems that need to consider system dynamic security and uncertainty simultaneously.</description><subject>Algorithms</subject><subject>Complex systems</subject><subject>Computer simulation</subject><subject>Constraints</subject><subject>Feasibility</subject><subject>maximum wind power penetration limit</subject><subject>multiobjective OPF</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Penetration</subject><subject>probabilistic optimal OPF</subject><subject>Renewable energy</subject><subject>Security</subject><subject>Transient stability</subject><subject>transient stability constrained OPF</subject><subject>Uncertainty</subject><subject>Wind power</subject><issn>2050-7038</issn><issn>2050-7038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYsouOievQY8dzdpm6Y9Lsv6Bxb0sJ5Dmk4la9vUJHWtJ8-e_Ix-ErNbEW8ODDM8fm8GXhBcEDwjGEfzCFMcMhxnMxIlKT0KJr_K8Z_9NJhau8W-8oQQlk2CjwVq-topXWxBOvUCSHdONepNeK39ev8shIUSSVHLvj5oqDKigZ02T0hXqBGvqukbtFNtiTq9A4M6aMGZka39KYekbq0qwaj2EdnBOmiQB7wGrUPWiULVyg3nwUklagvTn3kWPFytNsubcH13fbtcrEMZU0bDvIrSMpUFYVDIJAIZMZzEQtAqy1mVi0qQMk4FkZlvUpSMyoTSvAAmAVNWxGfB5Xi3M_q5B-v4Vvem9S95lMQxzTKcUE_NR0oaba2BindGNcIMnGC-z5zvU-X7VPkhc-9IR8dO1TD8h_PVZnU_Gr8BOv6JIg</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Wang, Man</creator><creator>Qiu, Chendong</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5491-1529</orcidid><orcidid>https://orcid.org/0000-0002-3923-6358</orcidid></search><sort><creationdate>202008</creationdate><title>A multiobjective optimization‐based calculation framework of maximum wind power penetration limit considering system transient stability</title><author>Wang, Man ; Qiu, Chendong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3575-9f26d6cb17ebc42ec27043aa5f897f9afa1d36a1c8a1c1bd75c4559be7ce057b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Complex systems</topic><topic>Computer simulation</topic><topic>Constraints</topic><topic>Feasibility</topic><topic>maximum wind power penetration limit</topic><topic>multiobjective OPF</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Penetration</topic><topic>probabilistic optimal OPF</topic><topic>Renewable energy</topic><topic>Security</topic><topic>Transient stability</topic><topic>transient stability constrained OPF</topic><topic>Uncertainty</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Man</creatorcontrib><creatorcontrib>Qiu, Chendong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International transactions on electrical energy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Man</au><au>Qiu, Chendong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multiobjective optimization‐based calculation framework of maximum wind power penetration limit considering system transient stability</atitle><jtitle>International transactions on electrical energy systems</jtitle><date>2020-08</date><risdate>2020</risdate><volume>30</volume><issue>8</issue><epage>n/a</epage><issn>2050-7038</issn><eissn>2050-7038</eissn><abstract>Summary This paper elaborates a novel optimum programming‐based algorithm that embeds the stochastic multiobjective particle swarm optimization (PSO) method and the deterministic interior point method to calculate the maximum wind power penetration level. With the optimization target of promoting the wind generation capacity, the three‐stage optimization strategy is established to contemplate the transient stability constraint (TSC) as well as the uncertainty factors in the high wind penetrated system. To address the uncertainty factors in system, the chance‐constrained optimization approach is practiced to figure out the initial optimal operating point in the first stage. On the ground of which, the TSC is reinforced in the second stage to delineate the dynamic feasible region. Among the obtained security domain, the ultimate operation solution is calculated in the last stage and provides operators with specific operating scheme. The framework is capable of supporting alternative optimal methods and can be extended to more complex system modeling. The feasibility of the algorithm framework has been demonstrated by simulations on two benchmark systems. And it has prosperous application prospects for optimization problems that need to consider system dynamic security and uncertainty simultaneously.</abstract><cop>Hoboken</cop><pub>Hindawi Limited</pub><doi>10.1002/2050-7038.12465</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5491-1529</orcidid><orcidid>https://orcid.org/0000-0002-3923-6358</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7038
ispartof International transactions on electrical energy systems, 2020-08, Vol.30 (8), p.n/a
issn 2050-7038
2050-7038
language eng
recordid cdi_proquest_journals_2433588045
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Complex systems
Computer simulation
Constraints
Feasibility
maximum wind power penetration limit
multiobjective OPF
Multiple objective analysis
Optimization
Particle swarm optimization
Penetration
probabilistic optimal OPF
Renewable energy
Security
Transient stability
transient stability constrained OPF
Uncertainty
Wind power
title A multiobjective optimization‐based calculation framework of maximum wind power penetration limit considering system transient stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multiobjective%20optimization%E2%80%90based%20calculation%20framework%20of%20maximum%20wind%20power%20penetration%20limit%20considering%20system%20transient%20stability&rft.jtitle=International%20transactions%20on%20electrical%20energy%20systems&rft.au=Wang,%20Man&rft.date=2020-08&rft.volume=30&rft.issue=8&rft.epage=n/a&rft.issn=2050-7038&rft.eissn=2050-7038&rft_id=info:doi/10.1002/2050-7038.12465&rft_dat=%3Cproquest_cross%3E2433588045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2433588045&rft_id=info:pmid/&rfr_iscdi=true