A multiobjective optimization‐based calculation framework of maximum wind power penetration limit considering system transient stability
Summary This paper elaborates a novel optimum programming‐based algorithm that embeds the stochastic multiobjective particle swarm optimization (PSO) method and the deterministic interior point method to calculate the maximum wind power penetration level. With the optimization target of promoting th...
Gespeichert in:
Veröffentlicht in: | International transactions on electrical energy systems 2020-08, Vol.30 (8), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | |
container_title | International transactions on electrical energy systems |
container_volume | 30 |
creator | Wang, Man Qiu, Chendong |
description | Summary
This paper elaborates a novel optimum programming‐based algorithm that embeds the stochastic multiobjective particle swarm optimization (PSO) method and the deterministic interior point method to calculate the maximum wind power penetration level. With the optimization target of promoting the wind generation capacity, the three‐stage optimization strategy is established to contemplate the transient stability constraint (TSC) as well as the uncertainty factors in the high wind penetrated system. To address the uncertainty factors in system, the chance‐constrained optimization approach is practiced to figure out the initial optimal operating point in the first stage. On the ground of which, the TSC is reinforced in the second stage to delineate the dynamic feasible region. Among the obtained security domain, the ultimate operation solution is calculated in the last stage and provides operators with specific operating scheme. The framework is capable of supporting alternative optimal methods and can be extended to more complex system modeling. The feasibility of the algorithm framework has been demonstrated by simulations on two benchmark systems. And it has prosperous application prospects for optimization problems that need to consider system dynamic security and uncertainty simultaneously. |
doi_str_mv | 10.1002/2050-7038.12465 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2433588045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2433588045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3575-9f26d6cb17ebc42ec27043aa5f897f9afa1d36a1c8a1c1bd75c4559be7ce057b3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYsouOievQY8dzdpm6Y9Lsv6Bxb0sJ5Dmk4la9vUJHWtJ8-e_Ix-ErNbEW8ODDM8fm8GXhBcEDwjGEfzCFMcMhxnMxIlKT0KJr_K8Z_9NJhau8W-8oQQlk2CjwVq-topXWxBOvUCSHdONepNeK39ev8shIUSSVHLvj5oqDKigZ02T0hXqBGvqukbtFNtiTq9A4M6aMGZka39KYekbq0qwaj2EdnBOmiQB7wGrUPWiULVyg3nwUklagvTn3kWPFytNsubcH13fbtcrEMZU0bDvIrSMpUFYVDIJAIZMZzEQtAqy1mVi0qQMk4FkZlvUpSMyoTSvAAmAVNWxGfB5Xi3M_q5B-v4Vvem9S95lMQxzTKcUE_NR0oaba2BindGNcIMnGC-z5zvU-X7VPkhc-9IR8dO1TD8h_PVZnU_Gr8BOv6JIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2433588045</pqid></control><display><type>article</type><title>A multiobjective optimization‐based calculation framework of maximum wind power penetration limit considering system transient stability</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Man ; Qiu, Chendong</creator><creatorcontrib>Wang, Man ; Qiu, Chendong</creatorcontrib><description>Summary
This paper elaborates a novel optimum programming‐based algorithm that embeds the stochastic multiobjective particle swarm optimization (PSO) method and the deterministic interior point method to calculate the maximum wind power penetration level. With the optimization target of promoting the wind generation capacity, the three‐stage optimization strategy is established to contemplate the transient stability constraint (TSC) as well as the uncertainty factors in the high wind penetrated system. To address the uncertainty factors in system, the chance‐constrained optimization approach is practiced to figure out the initial optimal operating point in the first stage. On the ground of which, the TSC is reinforced in the second stage to delineate the dynamic feasible region. Among the obtained security domain, the ultimate operation solution is calculated in the last stage and provides operators with specific operating scheme. The framework is capable of supporting alternative optimal methods and can be extended to more complex system modeling. The feasibility of the algorithm framework has been demonstrated by simulations on two benchmark systems. And it has prosperous application prospects for optimization problems that need to consider system dynamic security and uncertainty simultaneously.</description><identifier>ISSN: 2050-7038</identifier><identifier>EISSN: 2050-7038</identifier><identifier>DOI: 10.1002/2050-7038.12465</identifier><language>eng</language><publisher>Hoboken: Hindawi Limited</publisher><subject>Algorithms ; Complex systems ; Computer simulation ; Constraints ; Feasibility ; maximum wind power penetration limit ; multiobjective OPF ; Multiple objective analysis ; Optimization ; Particle swarm optimization ; Penetration ; probabilistic optimal OPF ; Renewable energy ; Security ; Transient stability ; transient stability constrained OPF ; Uncertainty ; Wind power</subject><ispartof>International transactions on electrical energy systems, 2020-08, Vol.30 (8), p.n/a</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3575-9f26d6cb17ebc42ec27043aa5f897f9afa1d36a1c8a1c1bd75c4559be7ce057b3</citedby><cites>FETCH-LOGICAL-c3575-9f26d6cb17ebc42ec27043aa5f897f9afa1d36a1c8a1c1bd75c4559be7ce057b3</cites><orcidid>0000-0001-5491-1529 ; 0000-0002-3923-6358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2050-7038.12465$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2050-7038.12465$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Wang, Man</creatorcontrib><creatorcontrib>Qiu, Chendong</creatorcontrib><title>A multiobjective optimization‐based calculation framework of maximum wind power penetration limit considering system transient stability</title><title>International transactions on electrical energy systems</title><description>Summary
This paper elaborates a novel optimum programming‐based algorithm that embeds the stochastic multiobjective particle swarm optimization (PSO) method and the deterministic interior point method to calculate the maximum wind power penetration level. With the optimization target of promoting the wind generation capacity, the three‐stage optimization strategy is established to contemplate the transient stability constraint (TSC) as well as the uncertainty factors in the high wind penetrated system. To address the uncertainty factors in system, the chance‐constrained optimization approach is practiced to figure out the initial optimal operating point in the first stage. On the ground of which, the TSC is reinforced in the second stage to delineate the dynamic feasible region. Among the obtained security domain, the ultimate operation solution is calculated in the last stage and provides operators with specific operating scheme. The framework is capable of supporting alternative optimal methods and can be extended to more complex system modeling. The feasibility of the algorithm framework has been demonstrated by simulations on two benchmark systems. And it has prosperous application prospects for optimization problems that need to consider system dynamic security and uncertainty simultaneously.</description><subject>Algorithms</subject><subject>Complex systems</subject><subject>Computer simulation</subject><subject>Constraints</subject><subject>Feasibility</subject><subject>maximum wind power penetration limit</subject><subject>multiobjective OPF</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Penetration</subject><subject>probabilistic optimal OPF</subject><subject>Renewable energy</subject><subject>Security</subject><subject>Transient stability</subject><subject>transient stability constrained OPF</subject><subject>Uncertainty</subject><subject>Wind power</subject><issn>2050-7038</issn><issn>2050-7038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYsouOievQY8dzdpm6Y9Lsv6Bxb0sJ5Dmk4la9vUJHWtJ8-e_Ix-ErNbEW8ODDM8fm8GXhBcEDwjGEfzCFMcMhxnMxIlKT0KJr_K8Z_9NJhau8W-8oQQlk2CjwVq-topXWxBOvUCSHdONepNeK39ev8shIUSSVHLvj5oqDKigZ02T0hXqBGvqukbtFNtiTq9A4M6aMGZka39KYekbq0qwaj2EdnBOmiQB7wGrUPWiULVyg3nwUklagvTn3kWPFytNsubcH13fbtcrEMZU0bDvIrSMpUFYVDIJAIZMZzEQtAqy1mVi0qQMk4FkZlvUpSMyoTSvAAmAVNWxGfB5Xi3M_q5B-v4Vvem9S95lMQxzTKcUE_NR0oaba2BindGNcIMnGC-z5zvU-X7VPkhc-9IR8dO1TD8h_PVZnU_Gr8BOv6JIg</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Wang, Man</creator><creator>Qiu, Chendong</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5491-1529</orcidid><orcidid>https://orcid.org/0000-0002-3923-6358</orcidid></search><sort><creationdate>202008</creationdate><title>A multiobjective optimization‐based calculation framework of maximum wind power penetration limit considering system transient stability</title><author>Wang, Man ; Qiu, Chendong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3575-9f26d6cb17ebc42ec27043aa5f897f9afa1d36a1c8a1c1bd75c4559be7ce057b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Complex systems</topic><topic>Computer simulation</topic><topic>Constraints</topic><topic>Feasibility</topic><topic>maximum wind power penetration limit</topic><topic>multiobjective OPF</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Penetration</topic><topic>probabilistic optimal OPF</topic><topic>Renewable energy</topic><topic>Security</topic><topic>Transient stability</topic><topic>transient stability constrained OPF</topic><topic>Uncertainty</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Man</creatorcontrib><creatorcontrib>Qiu, Chendong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International transactions on electrical energy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Man</au><au>Qiu, Chendong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multiobjective optimization‐based calculation framework of maximum wind power penetration limit considering system transient stability</atitle><jtitle>International transactions on electrical energy systems</jtitle><date>2020-08</date><risdate>2020</risdate><volume>30</volume><issue>8</issue><epage>n/a</epage><issn>2050-7038</issn><eissn>2050-7038</eissn><abstract>Summary
This paper elaborates a novel optimum programming‐based algorithm that embeds the stochastic multiobjective particle swarm optimization (PSO) method and the deterministic interior point method to calculate the maximum wind power penetration level. With the optimization target of promoting the wind generation capacity, the three‐stage optimization strategy is established to contemplate the transient stability constraint (TSC) as well as the uncertainty factors in the high wind penetrated system. To address the uncertainty factors in system, the chance‐constrained optimization approach is practiced to figure out the initial optimal operating point in the first stage. On the ground of which, the TSC is reinforced in the second stage to delineate the dynamic feasible region. Among the obtained security domain, the ultimate operation solution is calculated in the last stage and provides operators with specific operating scheme. The framework is capable of supporting alternative optimal methods and can be extended to more complex system modeling. The feasibility of the algorithm framework has been demonstrated by simulations on two benchmark systems. And it has prosperous application prospects for optimization problems that need to consider system dynamic security and uncertainty simultaneously.</abstract><cop>Hoboken</cop><pub>Hindawi Limited</pub><doi>10.1002/2050-7038.12465</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5491-1529</orcidid><orcidid>https://orcid.org/0000-0002-3923-6358</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7038 |
ispartof | International transactions on electrical energy systems, 2020-08, Vol.30 (8), p.n/a |
issn | 2050-7038 2050-7038 |
language | eng |
recordid | cdi_proquest_journals_2433588045 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Complex systems Computer simulation Constraints Feasibility maximum wind power penetration limit multiobjective OPF Multiple objective analysis Optimization Particle swarm optimization Penetration probabilistic optimal OPF Renewable energy Security Transient stability transient stability constrained OPF Uncertainty Wind power |
title | A multiobjective optimization‐based calculation framework of maximum wind power penetration limit considering system transient stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multiobjective%20optimization%E2%80%90based%20calculation%20framework%20of%20maximum%20wind%20power%20penetration%20limit%20considering%20system%20transient%20stability&rft.jtitle=International%20transactions%20on%20electrical%20energy%20systems&rft.au=Wang,%20Man&rft.date=2020-08&rft.volume=30&rft.issue=8&rft.epage=n/a&rft.issn=2050-7038&rft.eissn=2050-7038&rft_id=info:doi/10.1002/2050-7038.12465&rft_dat=%3Cproquest_cross%3E2433588045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2433588045&rft_id=info:pmid/&rfr_iscdi=true |