Tsunami Fragility Functions for Road and Utility Pole Assets Using Field Survey and Remotely Sensed Data from the 2018 Sulawesi Tsunami, Palu, Indonesia

The 2018 Sulawesi tsunami caused widespread impacts in Palu City, Indonesia, including to components of infrastructure lifeline networks. Lifeline networks are key to the operation of society and are particularly crucial during post-disaster relief and recovery efforts. Understanding their vulnerabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pure and applied geophysics 2020-08, Vol.177 (8), p.3545-3562
Hauptverfasser: Williams, James H., Paulik, Ryan, Wilson, Thomas M., Wotherspoon, Liam, Rusdin, Andi, Pratama, Gumbert Maylda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3562
container_issue 8
container_start_page 3545
container_title Pure and applied geophysics
container_volume 177
creator Williams, James H.
Paulik, Ryan
Wilson, Thomas M.
Wotherspoon, Liam
Rusdin, Andi
Pratama, Gumbert Maylda
description The 2018 Sulawesi tsunami caused widespread impacts in Palu City, Indonesia, including to components of infrastructure lifeline networks. Lifeline networks are key to the operation of society and are particularly crucial during post-disaster relief and recovery efforts. Understanding their vulnerability to tsunami hazards is important for disaster risk reduction, but is an understudied topic. This study uses field survey and remotely sensed data to develop a single dataset, used to create tsunami fragility functions for road and utility pole assets in Palu. Tsunami inundation depths were estimated at component locations from a spatial interpolation of field measured flow depths and wave run-up. Component attributes and geometries exposed to tsunami inundation were compiled from both field surveys and remote sensing on satellite imagery and ‘street view’ imagery, which included component construction material, capacity (roads) and height (poles). Roads demonstrate a 0.16 probability of exceeding complete damage at 2 m inundation depth, while utility poles see a 0.47 probability. The probability of exceeding complete damage at 2 m inundation depth for concrete, asphalt, collector and local roads is 0.34, 0.17, 0.19 and 0.13 respectively, and for concrete, steel, steel  5 m height utility poles is 0.42, 0.48, 0.49 and 0.47 respectively. When comparing the synthesised tsunami fragility functions to those from other global events, Palu roads were more vulnerable at 2 m inundation depth (0.16) compared to roads exposed to the 2011 Tohoku tsunami in Japan (0.06) and 2015 Illapel tsunami in Chile (0.05).
doi_str_mv 10.1007/s00024-020-02545-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2433033107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2433033107</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-8571283f2ebc3f167481f8a5e8103c217752e444dc72c6ccaa1bda53d912307a3</originalsourceid><addsrcrecordid>eNp9kctOHDEQRS2USExIfiCrktjSofzoxywRZAISEgiYtVV0Vw-Nemyw3aD5k3xuDI2UHQvLcvncW6q6QvyU-Esi1scREZUpUGE-pSmLak8spMnPpdTVF7FA1LowZan3xbcYHxFlXZfLhfh7FydH2wFWgTbDOKQdrCbXpsG7CL0PcOOpA3IdrNP8fe1HhpMYOUVYx8FtYDXw2MHtFF54947e8NYnHndwyy5yB2eUCPrgt5AeGBTKJtMjvXIc4KP_EVzTOB3Bheu8y3X6Lr72NEb-8XEfiPXq993peXF59efi9OSyIG1UKpqylqrRveL7Vveyqk0j-4ZKbiTqVr1NqdgY07W1aqu2JZL3HZW6W0qlsSZ9IA5n36fgnyeOyT76Kbjc0iqjdV6bxDpTaqba4GMM3NunMGwp7KxE-5aAnROwOQH7noCtskjPophht-Hw3_oT1T_BhYjG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2433033107</pqid></control><display><type>article</type><title>Tsunami Fragility Functions for Road and Utility Pole Assets Using Field Survey and Remotely Sensed Data from the 2018 Sulawesi Tsunami, Palu, Indonesia</title><source>Springer Nature - Complete Springer Journals</source><creator>Williams, James H. ; Paulik, Ryan ; Wilson, Thomas M. ; Wotherspoon, Liam ; Rusdin, Andi ; Pratama, Gumbert Maylda</creator><creatorcontrib>Williams, James H. ; Paulik, Ryan ; Wilson, Thomas M. ; Wotherspoon, Liam ; Rusdin, Andi ; Pratama, Gumbert Maylda</creatorcontrib><description>The 2018 Sulawesi tsunami caused widespread impacts in Palu City, Indonesia, including to components of infrastructure lifeline networks. Lifeline networks are key to the operation of society and are particularly crucial during post-disaster relief and recovery efforts. Understanding their vulnerability to tsunami hazards is important for disaster risk reduction, but is an understudied topic. This study uses field survey and remotely sensed data to develop a single dataset, used to create tsunami fragility functions for road and utility pole assets in Palu. Tsunami inundation depths were estimated at component locations from a spatial interpolation of field measured flow depths and wave run-up. Component attributes and geometries exposed to tsunami inundation were compiled from both field surveys and remote sensing on satellite imagery and ‘street view’ imagery, which included component construction material, capacity (roads) and height (poles). Roads demonstrate a 0.16 probability of exceeding complete damage at 2 m inundation depth, while utility poles see a 0.47 probability. The probability of exceeding complete damage at 2 m inundation depth for concrete, asphalt, collector and local roads is 0.34, 0.17, 0.19 and 0.13 respectively, and for concrete, steel, steel &lt; 5 m height and steel &gt; 5 m height utility poles is 0.42, 0.48, 0.49 and 0.47 respectively. When comparing the synthesised tsunami fragility functions to those from other global events, Palu roads were more vulnerable at 2 m inundation depth (0.16) compared to roads exposed to the 2011 Tohoku tsunami in Japan (0.06) and 2015 Illapel tsunami in Chile (0.05).</description><identifier>ISSN: 0033-4553</identifier><identifier>EISSN: 1420-9136</identifier><identifier>DOI: 10.1007/s00024-020-02545-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Asphalt ; Concrete ; Construction materials ; Damage ; Depth ; Disaster management ; Disaster relief ; Disaster risk ; Earth and Environmental Science ; Earth Sciences ; Emergency preparedness ; Flooding ; Fragility ; Geophysics/Geodesy ; Height ; Imagery ; Interpolation ; Polls &amp; surveys ; Probability theory ; Remote sensing ; Risk management ; Risk reduction ; Road construction ; Roads ; Satellite imagery ; Spaceborne remote sensing ; Steel ; Sulawesi/Palu-2018 and Anak/Krakatau-2018 ; Surveying ; Surveys ; Tsunami hazard ; Tsunamis ; Utility poles ; Vulnerability ; Wave runup ; Weather hazards</subject><ispartof>Pure and applied geophysics, 2020-08, Vol.177 (8), p.3545-3562</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-8571283f2ebc3f167481f8a5e8103c217752e444dc72c6ccaa1bda53d912307a3</citedby><cites>FETCH-LOGICAL-a342t-8571283f2ebc3f167481f8a5e8103c217752e444dc72c6ccaa1bda53d912307a3</cites><orcidid>0000-0002-7564-0032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00024-020-02545-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00024-020-02545-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Williams, James H.</creatorcontrib><creatorcontrib>Paulik, Ryan</creatorcontrib><creatorcontrib>Wilson, Thomas M.</creatorcontrib><creatorcontrib>Wotherspoon, Liam</creatorcontrib><creatorcontrib>Rusdin, Andi</creatorcontrib><creatorcontrib>Pratama, Gumbert Maylda</creatorcontrib><title>Tsunami Fragility Functions for Road and Utility Pole Assets Using Field Survey and Remotely Sensed Data from the 2018 Sulawesi Tsunami, Palu, Indonesia</title><title>Pure and applied geophysics</title><addtitle>Pure Appl. Geophys</addtitle><description>The 2018 Sulawesi tsunami caused widespread impacts in Palu City, Indonesia, including to components of infrastructure lifeline networks. Lifeline networks are key to the operation of society and are particularly crucial during post-disaster relief and recovery efforts. Understanding their vulnerability to tsunami hazards is important for disaster risk reduction, but is an understudied topic. This study uses field survey and remotely sensed data to develop a single dataset, used to create tsunami fragility functions for road and utility pole assets in Palu. Tsunami inundation depths were estimated at component locations from a spatial interpolation of field measured flow depths and wave run-up. Component attributes and geometries exposed to tsunami inundation were compiled from both field surveys and remote sensing on satellite imagery and ‘street view’ imagery, which included component construction material, capacity (roads) and height (poles). Roads demonstrate a 0.16 probability of exceeding complete damage at 2 m inundation depth, while utility poles see a 0.47 probability. The probability of exceeding complete damage at 2 m inundation depth for concrete, asphalt, collector and local roads is 0.34, 0.17, 0.19 and 0.13 respectively, and for concrete, steel, steel &lt; 5 m height and steel &gt; 5 m height utility poles is 0.42, 0.48, 0.49 and 0.47 respectively. When comparing the synthesised tsunami fragility functions to those from other global events, Palu roads were more vulnerable at 2 m inundation depth (0.16) compared to roads exposed to the 2011 Tohoku tsunami in Japan (0.06) and 2015 Illapel tsunami in Chile (0.05).</description><subject>Asphalt</subject><subject>Concrete</subject><subject>Construction materials</subject><subject>Damage</subject><subject>Depth</subject><subject>Disaster management</subject><subject>Disaster relief</subject><subject>Disaster risk</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Emergency preparedness</subject><subject>Flooding</subject><subject>Fragility</subject><subject>Geophysics/Geodesy</subject><subject>Height</subject><subject>Imagery</subject><subject>Interpolation</subject><subject>Polls &amp; surveys</subject><subject>Probability theory</subject><subject>Remote sensing</subject><subject>Risk management</subject><subject>Risk reduction</subject><subject>Road construction</subject><subject>Roads</subject><subject>Satellite imagery</subject><subject>Spaceborne remote sensing</subject><subject>Steel</subject><subject>Sulawesi/Palu-2018 and Anak/Krakatau-2018</subject><subject>Surveying</subject><subject>Surveys</subject><subject>Tsunami hazard</subject><subject>Tsunamis</subject><subject>Utility poles</subject><subject>Vulnerability</subject><subject>Wave runup</subject><subject>Weather hazards</subject><issn>0033-4553</issn><issn>1420-9136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctOHDEQRS2USExIfiCrktjSofzoxywRZAISEgiYtVV0Vw-Nemyw3aD5k3xuDI2UHQvLcvncW6q6QvyU-Esi1scREZUpUGE-pSmLak8spMnPpdTVF7FA1LowZan3xbcYHxFlXZfLhfh7FydH2wFWgTbDOKQdrCbXpsG7CL0PcOOpA3IdrNP8fe1HhpMYOUVYx8FtYDXw2MHtFF54947e8NYnHndwyy5yB2eUCPrgt5AeGBTKJtMjvXIc4KP_EVzTOB3Bheu8y3X6Lr72NEb-8XEfiPXq993peXF59efi9OSyIG1UKpqylqrRveL7Vveyqk0j-4ZKbiTqVr1NqdgY07W1aqu2JZL3HZW6W0qlsSZ9IA5n36fgnyeOyT76Kbjc0iqjdV6bxDpTaqba4GMM3NunMGwp7KxE-5aAnROwOQH7noCtskjPophht-Hw3_oT1T_BhYjG</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Williams, James H.</creator><creator>Paulik, Ryan</creator><creator>Wilson, Thomas M.</creator><creator>Wotherspoon, Liam</creator><creator>Rusdin, Andi</creator><creator>Pratama, Gumbert Maylda</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7564-0032</orcidid></search><sort><creationdate>20200801</creationdate><title>Tsunami Fragility Functions for Road and Utility Pole Assets Using Field Survey and Remotely Sensed Data from the 2018 Sulawesi Tsunami, Palu, Indonesia</title><author>Williams, James H. ; Paulik, Ryan ; Wilson, Thomas M. ; Wotherspoon, Liam ; Rusdin, Andi ; Pratama, Gumbert Maylda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-8571283f2ebc3f167481f8a5e8103c217752e444dc72c6ccaa1bda53d912307a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asphalt</topic><topic>Concrete</topic><topic>Construction materials</topic><topic>Damage</topic><topic>Depth</topic><topic>Disaster management</topic><topic>Disaster relief</topic><topic>Disaster risk</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Emergency preparedness</topic><topic>Flooding</topic><topic>Fragility</topic><topic>Geophysics/Geodesy</topic><topic>Height</topic><topic>Imagery</topic><topic>Interpolation</topic><topic>Polls &amp; surveys</topic><topic>Probability theory</topic><topic>Remote sensing</topic><topic>Risk management</topic><topic>Risk reduction</topic><topic>Road construction</topic><topic>Roads</topic><topic>Satellite imagery</topic><topic>Spaceborne remote sensing</topic><topic>Steel</topic><topic>Sulawesi/Palu-2018 and Anak/Krakatau-2018</topic><topic>Surveying</topic><topic>Surveys</topic><topic>Tsunami hazard</topic><topic>Tsunamis</topic><topic>Utility poles</topic><topic>Vulnerability</topic><topic>Wave runup</topic><topic>Weather hazards</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, James H.</creatorcontrib><creatorcontrib>Paulik, Ryan</creatorcontrib><creatorcontrib>Wilson, Thomas M.</creatorcontrib><creatorcontrib>Wotherspoon, Liam</creatorcontrib><creatorcontrib>Rusdin, Andi</creatorcontrib><creatorcontrib>Pratama, Gumbert Maylda</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Pure and applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, James H.</au><au>Paulik, Ryan</au><au>Wilson, Thomas M.</au><au>Wotherspoon, Liam</au><au>Rusdin, Andi</au><au>Pratama, Gumbert Maylda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tsunami Fragility Functions for Road and Utility Pole Assets Using Field Survey and Remotely Sensed Data from the 2018 Sulawesi Tsunami, Palu, Indonesia</atitle><jtitle>Pure and applied geophysics</jtitle><stitle>Pure Appl. Geophys</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>177</volume><issue>8</issue><spage>3545</spage><epage>3562</epage><pages>3545-3562</pages><issn>0033-4553</issn><eissn>1420-9136</eissn><abstract>The 2018 Sulawesi tsunami caused widespread impacts in Palu City, Indonesia, including to components of infrastructure lifeline networks. Lifeline networks are key to the operation of society and are particularly crucial during post-disaster relief and recovery efforts. Understanding their vulnerability to tsunami hazards is important for disaster risk reduction, but is an understudied topic. This study uses field survey and remotely sensed data to develop a single dataset, used to create tsunami fragility functions for road and utility pole assets in Palu. Tsunami inundation depths were estimated at component locations from a spatial interpolation of field measured flow depths and wave run-up. Component attributes and geometries exposed to tsunami inundation were compiled from both field surveys and remote sensing on satellite imagery and ‘street view’ imagery, which included component construction material, capacity (roads) and height (poles). Roads demonstrate a 0.16 probability of exceeding complete damage at 2 m inundation depth, while utility poles see a 0.47 probability. The probability of exceeding complete damage at 2 m inundation depth for concrete, asphalt, collector and local roads is 0.34, 0.17, 0.19 and 0.13 respectively, and for concrete, steel, steel &lt; 5 m height and steel &gt; 5 m height utility poles is 0.42, 0.48, 0.49 and 0.47 respectively. When comparing the synthesised tsunami fragility functions to those from other global events, Palu roads were more vulnerable at 2 m inundation depth (0.16) compared to roads exposed to the 2011 Tohoku tsunami in Japan (0.06) and 2015 Illapel tsunami in Chile (0.05).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00024-020-02545-6</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7564-0032</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0033-4553
ispartof Pure and applied geophysics, 2020-08, Vol.177 (8), p.3545-3562
issn 0033-4553
1420-9136
language eng
recordid cdi_proquest_journals_2433033107
source Springer Nature - Complete Springer Journals
subjects Asphalt
Concrete
Construction materials
Damage
Depth
Disaster management
Disaster relief
Disaster risk
Earth and Environmental Science
Earth Sciences
Emergency preparedness
Flooding
Fragility
Geophysics/Geodesy
Height
Imagery
Interpolation
Polls & surveys
Probability theory
Remote sensing
Risk management
Risk reduction
Road construction
Roads
Satellite imagery
Spaceborne remote sensing
Steel
Sulawesi/Palu-2018 and Anak/Krakatau-2018
Surveying
Surveys
Tsunami hazard
Tsunamis
Utility poles
Vulnerability
Wave runup
Weather hazards
title Tsunami Fragility Functions for Road and Utility Pole Assets Using Field Survey and Remotely Sensed Data from the 2018 Sulawesi Tsunami, Palu, Indonesia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tsunami%20Fragility%20Functions%20for%20Road%20and%20Utility%20Pole%20Assets%20Using%20Field%20Survey%20and%20Remotely%20Sensed%20Data%20from%20the%202018%20Sulawesi%20Tsunami,%20Palu,%20Indonesia&rft.jtitle=Pure%20and%20applied%20geophysics&rft.au=Williams,%20James%20H.&rft.date=2020-08-01&rft.volume=177&rft.issue=8&rft.spage=3545&rft.epage=3562&rft.pages=3545-3562&rft.issn=0033-4553&rft.eissn=1420-9136&rft_id=info:doi/10.1007/s00024-020-02545-6&rft_dat=%3Cproquest_cross%3E2433033107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2433033107&rft_id=info:pmid/&rfr_iscdi=true