Thermodynamic Response of a High-Resolution Tropical Indian Ocean Model to TOGA COARE Bulk Air–Sea Flux Parameterization: Case Study for the Bay of Bengal (BoB)
This study analyzes the thermodynamic response of an ocean model to two different flux parameterizations. We compared two experiments, a control run (CR) with the flux formulation proposed by Kara et al. [Journal of Atmospheric and Oceanic Technology, 17(10):1421–1438, 2000] with relative wind effec...
Gespeichert in:
Veröffentlicht in: | Pure and applied geophysics 2020-08, Vol.177 (8), p.4025-4044 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4044 |
---|---|
container_issue | 8 |
container_start_page | 4025 |
container_title | Pure and applied geophysics |
container_volume | 177 |
creator | Mallick, Subrat Kumar Agarwal, Neeraj Sharma, Rashmi Prasad, K. V. S. R. Ramakrishna, S. S. V. S. |
description | This study analyzes the thermodynamic response of an ocean model to two different flux parameterizations. We compared two experiments, a control run (CR) with the flux formulation proposed by Kara et al. [Journal of Atmospheric and Oceanic Technology, 17(10):1421–1438, 2000] with relative wind effect, and an experimental run (ER) with the Tropical Ocean-Global Atmosphere (TOGA) Coupled Ocean–Atmosphere Response Experiment version 3.0 [COARE3.0, Fairall et al. (J Geophys Res Oceans 101(C1):1295–1308, 1996; J Geophys Res Oceans, 101(C2):3747–3764; J Clim 16(4):571–591, 2003)] flux algorithm in the tropical Indian Ocean. Both experiments are performed for the period 2014–2017. The model is forced with daily analyzed fields of winds, radiation and freshwater fluxes from ERA-Interim. The performance of the CR and ER with respect to in situ and satellite observations is examined for the year 2015 in the Bay of Bengal (BoB). COARE3.0 weakens the surface wind stress by ~ 20% and increases the basin-averaged net heat flux by ~ 14%, and makes the sea surface temperature (SST) warmer by around 0.3–0.9 °C in the BoB in the ER. SST simulations were compared with observations, which revealed that in the ER, the SST errors were reduced by 5–40%, and errors in the temperature profile were significantly reduced by ~ 10 to 40% up to a depth of 80 m. BoB heat budget analysis showed that COARE3.0 significantly increased the upper ocean heat content, caused by a reduction in meridional heat transport across the 10° N latitude. This reduction in meridional heat transport is attributed to the reduced strength of upper ocean circulation resulting in the weakening of meridional volume transport (~ 25%). These findings indicate that COARE3.0 derived fluxes better simulate upper ocean thermal structure in the BoB. |
doi_str_mv | 10.1007/s00024-020-02448-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2433032739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2433032739</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-87078a8c162340fd1462bfec8803fce0f7e25b4a597faddc4b97a28a98cb2c203</originalsourceid><addsrcrecordid>eNp9kc2O0zAUhS0EEmXgBVhdiQ0swtzYTpywa6r5kwYVzZS1devYbYY0LnYiUVa8A2_Ao_Ek41Ikdiyur651zvkWh7HXOb7PEdV5REQuM-SYRsoqK5-wWS7TWeeifMpmiEJksijEc_YixgfEXKminrFfq60NO98eBtp1Bu5s3PshWvAOCK67zTZLX76fxs4PsAp-3xnq4WZoOxpgaWx6P_rW9jB6WC2v5rBYzu8uoJn6LzDvwu8fP-8twWU_fYNPFGhnRxu673SM-wALSqT7cWoP4HyAcWuhocOR3dhhkzhvG9-8e8meOeqjffV3n7HPlxerxXV2u7y6WcxvMxKSj1mlUFVUmbzkQqJrc1nytbOmqlA4Y9Epy4u1pKJWjtrWyHWtiFdUV2bNDUdxxt6ccvfBf51sHPWDn8KQkJpLIVBwJeqk4ieVCT7GYJ3eh25H4aBz1Mcu9KkLnbrQf7rQZTKJkykm8bCx4V_0f1yP962Msg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2433032739</pqid></control><display><type>article</type><title>Thermodynamic Response of a High-Resolution Tropical Indian Ocean Model to TOGA COARE Bulk Air–Sea Flux Parameterization: Case Study for the Bay of Bengal (BoB)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mallick, Subrat Kumar ; Agarwal, Neeraj ; Sharma, Rashmi ; Prasad, K. V. S. R. ; Ramakrishna, S. S. V. S.</creator><creatorcontrib>Mallick, Subrat Kumar ; Agarwal, Neeraj ; Sharma, Rashmi ; Prasad, K. V. S. R. ; Ramakrishna, S. S. V. S.</creatorcontrib><description>This study analyzes the thermodynamic response of an ocean model to two different flux parameterizations. We compared two experiments, a control run (CR) with the flux formulation proposed by Kara et al. [Journal of Atmospheric and Oceanic Technology, 17(10):1421–1438, 2000] with relative wind effect, and an experimental run (ER) with the Tropical Ocean-Global Atmosphere (TOGA) Coupled Ocean–Atmosphere Response Experiment version 3.0 [COARE3.0, Fairall et al. (J Geophys Res Oceans 101(C1):1295–1308, 1996; J Geophys Res Oceans, 101(C2):3747–3764; J Clim 16(4):571–591, 2003)] flux algorithm in the tropical Indian Ocean. Both experiments are performed for the period 2014–2017. The model is forced with daily analyzed fields of winds, radiation and freshwater fluxes from ERA-Interim. The performance of the CR and ER with respect to in situ and satellite observations is examined for the year 2015 in the Bay of Bengal (BoB). COARE3.0 weakens the surface wind stress by ~ 20% and increases the basin-averaged net heat flux by ~ 14%, and makes the sea surface temperature (SST) warmer by around 0.3–0.9 °C in the BoB in the ER. SST simulations were compared with observations, which revealed that in the ER, the SST errors were reduced by 5–40%, and errors in the temperature profile were significantly reduced by ~ 10 to 40% up to a depth of 80 m. BoB heat budget analysis showed that COARE3.0 significantly increased the upper ocean heat content, caused by a reduction in meridional heat transport across the 10° N latitude. This reduction in meridional heat transport is attributed to the reduced strength of upper ocean circulation resulting in the weakening of meridional volume transport (~ 25%). These findings indicate that COARE3.0 derived fluxes better simulate upper ocean thermal structure in the BoB.</description><identifier>ISSN: 0033-4553</identifier><identifier>EISSN: 1420-9136</identifier><identifier>DOI: 10.1007/s00024-020-02448-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Air-sea flux ; Algorithms ; Atmosphere ; Computer simulation ; Earth and Environmental Science ; Earth Sciences ; Enthalpy ; Errors ; Fluctuations ; Freshwater ; Geophysics/Geodesy ; Heat ; Heat budget ; Heat content ; Heat flux ; Heat transfer ; Heat transport ; Inland water environment ; Meridional heat transport ; Ocean circulation ; Ocean currents ; Ocean models ; Oceans ; Parameterization ; Radiation ; Reduction ; Satellite observation ; Sea surface ; Sea surface temperature ; Surface temperature ; Surface wind ; Temperature profile ; Temperature profiles ; Thermal structure ; Tropical atmosphere ; Tropical climate ; Upper ocean ; Volume transport ; Water circulation ; Wind ; Wind effects ; Wind stress ; Winds</subject><ispartof>Pure and applied geophysics, 2020-08, Vol.177 (8), p.4025-4044</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-87078a8c162340fd1462bfec8803fce0f7e25b4a597faddc4b97a28a98cb2c203</citedby><cites>FETCH-LOGICAL-a342t-87078a8c162340fd1462bfec8803fce0f7e25b4a597faddc4b97a28a98cb2c203</cites><orcidid>0000-0002-5453-4708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00024-020-02448-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00024-020-02448-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mallick, Subrat Kumar</creatorcontrib><creatorcontrib>Agarwal, Neeraj</creatorcontrib><creatorcontrib>Sharma, Rashmi</creatorcontrib><creatorcontrib>Prasad, K. V. S. R.</creatorcontrib><creatorcontrib>Ramakrishna, S. S. V. S.</creatorcontrib><title>Thermodynamic Response of a High-Resolution Tropical Indian Ocean Model to TOGA COARE Bulk Air–Sea Flux Parameterization: Case Study for the Bay of Bengal (BoB)</title><title>Pure and applied geophysics</title><addtitle>Pure Appl. Geophys</addtitle><description>This study analyzes the thermodynamic response of an ocean model to two different flux parameterizations. We compared two experiments, a control run (CR) with the flux formulation proposed by Kara et al. [Journal of Atmospheric and Oceanic Technology, 17(10):1421–1438, 2000] with relative wind effect, and an experimental run (ER) with the Tropical Ocean-Global Atmosphere (TOGA) Coupled Ocean–Atmosphere Response Experiment version 3.0 [COARE3.0, Fairall et al. (J Geophys Res Oceans 101(C1):1295–1308, 1996; J Geophys Res Oceans, 101(C2):3747–3764; J Clim 16(4):571–591, 2003)] flux algorithm in the tropical Indian Ocean. Both experiments are performed for the period 2014–2017. The model is forced with daily analyzed fields of winds, radiation and freshwater fluxes from ERA-Interim. The performance of the CR and ER with respect to in situ and satellite observations is examined for the year 2015 in the Bay of Bengal (BoB). COARE3.0 weakens the surface wind stress by ~ 20% and increases the basin-averaged net heat flux by ~ 14%, and makes the sea surface temperature (SST) warmer by around 0.3–0.9 °C in the BoB in the ER. SST simulations were compared with observations, which revealed that in the ER, the SST errors were reduced by 5–40%, and errors in the temperature profile were significantly reduced by ~ 10 to 40% up to a depth of 80 m. BoB heat budget analysis showed that COARE3.0 significantly increased the upper ocean heat content, caused by a reduction in meridional heat transport across the 10° N latitude. This reduction in meridional heat transport is attributed to the reduced strength of upper ocean circulation resulting in the weakening of meridional volume transport (~ 25%). These findings indicate that COARE3.0 derived fluxes better simulate upper ocean thermal structure in the BoB.</description><subject>Air-sea flux</subject><subject>Algorithms</subject><subject>Atmosphere</subject><subject>Computer simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Enthalpy</subject><subject>Errors</subject><subject>Fluctuations</subject><subject>Freshwater</subject><subject>Geophysics/Geodesy</subject><subject>Heat</subject><subject>Heat budget</subject><subject>Heat content</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heat transport</subject><subject>Inland water environment</subject><subject>Meridional heat transport</subject><subject>Ocean circulation</subject><subject>Ocean currents</subject><subject>Ocean models</subject><subject>Oceans</subject><subject>Parameterization</subject><subject>Radiation</subject><subject>Reduction</subject><subject>Satellite observation</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Surface temperature</subject><subject>Surface wind</subject><subject>Temperature profile</subject><subject>Temperature profiles</subject><subject>Thermal structure</subject><subject>Tropical atmosphere</subject><subject>Tropical climate</subject><subject>Upper ocean</subject><subject>Volume transport</subject><subject>Water circulation</subject><subject>Wind</subject><subject>Wind effects</subject><subject>Wind stress</subject><subject>Winds</subject><issn>0033-4553</issn><issn>1420-9136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc2O0zAUhS0EEmXgBVhdiQ0swtzYTpywa6r5kwYVzZS1devYbYY0LnYiUVa8A2_Ao_Ek41Ikdiyur651zvkWh7HXOb7PEdV5REQuM-SYRsoqK5-wWS7TWeeifMpmiEJksijEc_YixgfEXKminrFfq60NO98eBtp1Bu5s3PshWvAOCK67zTZLX76fxs4PsAp-3xnq4WZoOxpgaWx6P_rW9jB6WC2v5rBYzu8uoJn6LzDvwu8fP-8twWU_fYNPFGhnRxu673SM-wALSqT7cWoP4HyAcWuhocOR3dhhkzhvG9-8e8meOeqjffV3n7HPlxerxXV2u7y6WcxvMxKSj1mlUFVUmbzkQqJrc1nytbOmqlA4Y9Epy4u1pKJWjtrWyHWtiFdUV2bNDUdxxt6ccvfBf51sHPWDn8KQkJpLIVBwJeqk4ieVCT7GYJ3eh25H4aBz1Mcu9KkLnbrQf7rQZTKJkykm8bCx4V_0f1yP962Msg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Mallick, Subrat Kumar</creator><creator>Agarwal, Neeraj</creator><creator>Sharma, Rashmi</creator><creator>Prasad, K. V. S. R.</creator><creator>Ramakrishna, S. S. V. S.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5453-4708</orcidid></search><sort><creationdate>20200801</creationdate><title>Thermodynamic Response of a High-Resolution Tropical Indian Ocean Model to TOGA COARE Bulk Air–Sea Flux Parameterization: Case Study for the Bay of Bengal (BoB)</title><author>Mallick, Subrat Kumar ; Agarwal, Neeraj ; Sharma, Rashmi ; Prasad, K. V. S. R. ; Ramakrishna, S. S. V. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-87078a8c162340fd1462bfec8803fce0f7e25b4a597faddc4b97a28a98cb2c203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air-sea flux</topic><topic>Algorithms</topic><topic>Atmosphere</topic><topic>Computer simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Enthalpy</topic><topic>Errors</topic><topic>Fluctuations</topic><topic>Freshwater</topic><topic>Geophysics/Geodesy</topic><topic>Heat</topic><topic>Heat budget</topic><topic>Heat content</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heat transport</topic><topic>Inland water environment</topic><topic>Meridional heat transport</topic><topic>Ocean circulation</topic><topic>Ocean currents</topic><topic>Ocean models</topic><topic>Oceans</topic><topic>Parameterization</topic><topic>Radiation</topic><topic>Reduction</topic><topic>Satellite observation</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Surface temperature</topic><topic>Surface wind</topic><topic>Temperature profile</topic><topic>Temperature profiles</topic><topic>Thermal structure</topic><topic>Tropical atmosphere</topic><topic>Tropical climate</topic><topic>Upper ocean</topic><topic>Volume transport</topic><topic>Water circulation</topic><topic>Wind</topic><topic>Wind effects</topic><topic>Wind stress</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mallick, Subrat Kumar</creatorcontrib><creatorcontrib>Agarwal, Neeraj</creatorcontrib><creatorcontrib>Sharma, Rashmi</creatorcontrib><creatorcontrib>Prasad, K. V. S. R.</creatorcontrib><creatorcontrib>Ramakrishna, S. S. V. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Pure and applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mallick, Subrat Kumar</au><au>Agarwal, Neeraj</au><au>Sharma, Rashmi</au><au>Prasad, K. V. S. R.</au><au>Ramakrishna, S. S. V. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic Response of a High-Resolution Tropical Indian Ocean Model to TOGA COARE Bulk Air–Sea Flux Parameterization: Case Study for the Bay of Bengal (BoB)</atitle><jtitle>Pure and applied geophysics</jtitle><stitle>Pure Appl. Geophys</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>177</volume><issue>8</issue><spage>4025</spage><epage>4044</epage><pages>4025-4044</pages><issn>0033-4553</issn><eissn>1420-9136</eissn><abstract>This study analyzes the thermodynamic response of an ocean model to two different flux parameterizations. We compared two experiments, a control run (CR) with the flux formulation proposed by Kara et al. [Journal of Atmospheric and Oceanic Technology, 17(10):1421–1438, 2000] with relative wind effect, and an experimental run (ER) with the Tropical Ocean-Global Atmosphere (TOGA) Coupled Ocean–Atmosphere Response Experiment version 3.0 [COARE3.0, Fairall et al. (J Geophys Res Oceans 101(C1):1295–1308, 1996; J Geophys Res Oceans, 101(C2):3747–3764; J Clim 16(4):571–591, 2003)] flux algorithm in the tropical Indian Ocean. Both experiments are performed for the period 2014–2017. The model is forced with daily analyzed fields of winds, radiation and freshwater fluxes from ERA-Interim. The performance of the CR and ER with respect to in situ and satellite observations is examined for the year 2015 in the Bay of Bengal (BoB). COARE3.0 weakens the surface wind stress by ~ 20% and increases the basin-averaged net heat flux by ~ 14%, and makes the sea surface temperature (SST) warmer by around 0.3–0.9 °C in the BoB in the ER. SST simulations were compared with observations, which revealed that in the ER, the SST errors were reduced by 5–40%, and errors in the temperature profile were significantly reduced by ~ 10 to 40% up to a depth of 80 m. BoB heat budget analysis showed that COARE3.0 significantly increased the upper ocean heat content, caused by a reduction in meridional heat transport across the 10° N latitude. This reduction in meridional heat transport is attributed to the reduced strength of upper ocean circulation resulting in the weakening of meridional volume transport (~ 25%). These findings indicate that COARE3.0 derived fluxes better simulate upper ocean thermal structure in the BoB.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00024-020-02448-6</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5453-4708</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-4553 |
ispartof | Pure and applied geophysics, 2020-08, Vol.177 (8), p.4025-4044 |
issn | 0033-4553 1420-9136 |
language | eng |
recordid | cdi_proquest_journals_2433032739 |
source | SpringerLink Journals - AutoHoldings |
subjects | Air-sea flux Algorithms Atmosphere Computer simulation Earth and Environmental Science Earth Sciences Enthalpy Errors Fluctuations Freshwater Geophysics/Geodesy Heat Heat budget Heat content Heat flux Heat transfer Heat transport Inland water environment Meridional heat transport Ocean circulation Ocean currents Ocean models Oceans Parameterization Radiation Reduction Satellite observation Sea surface Sea surface temperature Surface temperature Surface wind Temperature profile Temperature profiles Thermal structure Tropical atmosphere Tropical climate Upper ocean Volume transport Water circulation Wind Wind effects Wind stress Winds |
title | Thermodynamic Response of a High-Resolution Tropical Indian Ocean Model to TOGA COARE Bulk Air–Sea Flux Parameterization: Case Study for the Bay of Bengal (BoB) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A56%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20Response%20of%20a%20High-Resolution%20Tropical%20Indian%20Ocean%20Model%20to%20TOGA%20COARE%20Bulk%20Air%E2%80%93Sea%20Flux%20Parameterization:%20Case%20Study%20for%20the%20Bay%20of%20Bengal%20(BoB)&rft.jtitle=Pure%20and%20applied%20geophysics&rft.au=Mallick,%20Subrat%20Kumar&rft.date=2020-08-01&rft.volume=177&rft.issue=8&rft.spage=4025&rft.epage=4044&rft.pages=4025-4044&rft.issn=0033-4553&rft.eissn=1420-9136&rft_id=info:doi/10.1007/s00024-020-02448-6&rft_dat=%3Cproquest_cross%3E2433032739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2433032739&rft_id=info:pmid/&rfr_iscdi=true |