Recent Advances in Optical Engineering of Light‐Emitting Electrochemical Cells
Since the first demonstration of light‐emitting electrochemical cells (LECs) in 1995, much effort has been made to develop this technology for display and lighting. A common LEC generally contains a single emissive layer blended with a salt, which provides mobile ions under a bias. Ions accumulated...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-08, Vol.30 (33), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 33 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Yang, Zu‐Po Su, Hai‐Ching |
description | Since the first demonstration of light‐emitting electrochemical cells (LECs) in 1995, much effort has been made to develop this technology for display and lighting. A common LEC generally contains a single emissive layer blended with a salt, which provides mobile ions under a bias. Ions accumulated at electrodes facilitate electrochemical doping such that operation voltage is low even when employing high‐work‐function inert electrodes. The superior properties of simple device architecture, low‐voltage operation, and compatibility with inert metal electrode render LECs suitable for cost‐effective light‐emitting sources. In addition to enormous progress in developing novel emissive materials for LECs, optical engineering has been shown to improve device performance of LECs in an alternative way. Light outcoupling enhancement technologies recycle the trapped light and increase the light output from LECs. Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs and to optimize device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance of metal nanoparticles improves the intrinsic emission properties of emissive materials by optical means. These reported optical techniques are overviewed in this review.
Light outcoupling enhancement technologies recycle trapped light and increase the light output from light‐emitting electrochemical cells (LECs). Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs for optimizing device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance generates desired emission properties. |
doi_str_mv | 10.1002/adfm.201906788 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2432872564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432872564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3838-3f14efd989dd4486265d6fe9145db1a4e224643f9f32a5919d4d8a91c42c858d3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKtb1wOup-Y2M8my1KkKlYoouAsxOWlT5lKTqdKdj-Az-iS2VurS1fk5fN858CN0TvCAYEwvtXX1gGIicV4IcYB6JCd5yjAVh_tMno_RSYwLjElRMN5D9w9goOmSoX3TjYGY-CaZLjtvdJWUzcw3AME3s6R1ycTP5t3Xx2dZ-67b7soKTBdaM4f6hx9BVcVTdOR0FeHsd_bR07h8HN2kk-n17Wg4SQ0TTKTMEQ7OSiGt5VzkNM9s7kASntkXojlQynPOnHSM6kwSabkVWhLDqRGZsKyPLnZ3l6F9XUHs1KJdhWbzUlHOqChotvH7aLCjTGhjDODUMvhah7UiWG1bU9vW1L61jSB3wruvYP0PrYZX47s_9xsSp3Fu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432872564</pqid></control><display><type>article</type><title>Recent Advances in Optical Engineering of Light‐Emitting Electrochemical Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Zu‐Po ; Su, Hai‐Ching</creator><creatorcontrib>Yang, Zu‐Po ; Su, Hai‐Ching</creatorcontrib><description>Since the first demonstration of light‐emitting electrochemical cells (LECs) in 1995, much effort has been made to develop this technology for display and lighting. A common LEC generally contains a single emissive layer blended with a salt, which provides mobile ions under a bias. Ions accumulated at electrodes facilitate electrochemical doping such that operation voltage is low even when employing high‐work‐function inert electrodes. The superior properties of simple device architecture, low‐voltage operation, and compatibility with inert metal electrode render LECs suitable for cost‐effective light‐emitting sources. In addition to enormous progress in developing novel emissive materials for LECs, optical engineering has been shown to improve device performance of LECs in an alternative way. Light outcoupling enhancement technologies recycle the trapped light and increase the light output from LECs. Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs and to optimize device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance of metal nanoparticles improves the intrinsic emission properties of emissive materials by optical means. These reported optical techniques are overviewed in this review.
Light outcoupling enhancement technologies recycle trapped light and increase the light output from light‐emitting electrochemical cells (LECs). Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs for optimizing device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance generates desired emission properties.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201906788</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Computer architecture ; Electric potential ; Electrochemical cells ; Electrodes ; Emission analysis ; emission zone ; Emissivity ; Light ; light outcoupling ; light‐emitting electrochemical cells ; Materials science ; Nanoparticles ; optical engineering ; Optical properties ; Optics ; spectral tailoring ; Voltage</subject><ispartof>Advanced functional materials, 2020-08, Vol.30 (33), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3838-3f14efd989dd4486265d6fe9145db1a4e224643f9f32a5919d4d8a91c42c858d3</citedby><cites>FETCH-LOGICAL-c3838-3f14efd989dd4486265d6fe9145db1a4e224643f9f32a5919d4d8a91c42c858d3</cites><orcidid>0000-0003-1100-4712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201906788$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201906788$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yang, Zu‐Po</creatorcontrib><creatorcontrib>Su, Hai‐Ching</creatorcontrib><title>Recent Advances in Optical Engineering of Light‐Emitting Electrochemical Cells</title><title>Advanced functional materials</title><description>Since the first demonstration of light‐emitting electrochemical cells (LECs) in 1995, much effort has been made to develop this technology for display and lighting. A common LEC generally contains a single emissive layer blended with a salt, which provides mobile ions under a bias. Ions accumulated at electrodes facilitate electrochemical doping such that operation voltage is low even when employing high‐work‐function inert electrodes. The superior properties of simple device architecture, low‐voltage operation, and compatibility with inert metal electrode render LECs suitable for cost‐effective light‐emitting sources. In addition to enormous progress in developing novel emissive materials for LECs, optical engineering has been shown to improve device performance of LECs in an alternative way. Light outcoupling enhancement technologies recycle the trapped light and increase the light output from LECs. Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs and to optimize device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance of metal nanoparticles improves the intrinsic emission properties of emissive materials by optical means. These reported optical techniques are overviewed in this review.
Light outcoupling enhancement technologies recycle trapped light and increase the light output from light‐emitting electrochemical cells (LECs). Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs for optimizing device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance generates desired emission properties.</description><subject>Computer architecture</subject><subject>Electric potential</subject><subject>Electrochemical cells</subject><subject>Electrodes</subject><subject>Emission analysis</subject><subject>emission zone</subject><subject>Emissivity</subject><subject>Light</subject><subject>light outcoupling</subject><subject>light‐emitting electrochemical cells</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>optical engineering</subject><subject>Optical properties</subject><subject>Optics</subject><subject>spectral tailoring</subject><subject>Voltage</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKtb1wOup-Y2M8my1KkKlYoouAsxOWlT5lKTqdKdj-Az-iS2VurS1fk5fN858CN0TvCAYEwvtXX1gGIicV4IcYB6JCd5yjAVh_tMno_RSYwLjElRMN5D9w9goOmSoX3TjYGY-CaZLjtvdJWUzcw3AME3s6R1ycTP5t3Xx2dZ-67b7soKTBdaM4f6hx9BVcVTdOR0FeHsd_bR07h8HN2kk-n17Wg4SQ0TTKTMEQ7OSiGt5VzkNM9s7kASntkXojlQynPOnHSM6kwSabkVWhLDqRGZsKyPLnZ3l6F9XUHs1KJdhWbzUlHOqChotvH7aLCjTGhjDODUMvhah7UiWG1bU9vW1L61jSB3wruvYP0PrYZX47s_9xsSp3Fu</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Yang, Zu‐Po</creator><creator>Su, Hai‐Ching</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1100-4712</orcidid></search><sort><creationdate>20200801</creationdate><title>Recent Advances in Optical Engineering of Light‐Emitting Electrochemical Cells</title><author>Yang, Zu‐Po ; Su, Hai‐Ching</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3838-3f14efd989dd4486265d6fe9145db1a4e224643f9f32a5919d4d8a91c42c858d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer architecture</topic><topic>Electric potential</topic><topic>Electrochemical cells</topic><topic>Electrodes</topic><topic>Emission analysis</topic><topic>emission zone</topic><topic>Emissivity</topic><topic>Light</topic><topic>light outcoupling</topic><topic>light‐emitting electrochemical cells</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>optical engineering</topic><topic>Optical properties</topic><topic>Optics</topic><topic>spectral tailoring</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zu‐Po</creatorcontrib><creatorcontrib>Su, Hai‐Ching</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zu‐Po</au><au>Su, Hai‐Ching</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Advances in Optical Engineering of Light‐Emitting Electrochemical Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>30</volume><issue>33</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Since the first demonstration of light‐emitting electrochemical cells (LECs) in 1995, much effort has been made to develop this technology for display and lighting. A common LEC generally contains a single emissive layer blended with a salt, which provides mobile ions under a bias. Ions accumulated at electrodes facilitate electrochemical doping such that operation voltage is low even when employing high‐work‐function inert electrodes. The superior properties of simple device architecture, low‐voltage operation, and compatibility with inert metal electrode render LECs suitable for cost‐effective light‐emitting sources. In addition to enormous progress in developing novel emissive materials for LECs, optical engineering has been shown to improve device performance of LECs in an alternative way. Light outcoupling enhancement technologies recycle the trapped light and increase the light output from LECs. Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs and to optimize device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance of metal nanoparticles improves the intrinsic emission properties of emissive materials by optical means. These reported optical techniques are overviewed in this review.
Light outcoupling enhancement technologies recycle trapped light and increase the light output from light‐emitting electrochemical cells (LECs). Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs for optimizing device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance generates desired emission properties.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201906788</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-1100-4712</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-08, Vol.30 (33), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2432872564 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Computer architecture Electric potential Electrochemical cells Electrodes Emission analysis emission zone Emissivity Light light outcoupling light‐emitting electrochemical cells Materials science Nanoparticles optical engineering Optical properties Optics spectral tailoring Voltage |
title | Recent Advances in Optical Engineering of Light‐Emitting Electrochemical Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Advances%20in%20Optical%20Engineering%20of%20Light%E2%80%90Emitting%20Electrochemical%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Yang,%20Zu%E2%80%90Po&rft.date=2020-08-01&rft.volume=30&rft.issue=33&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201906788&rft_dat=%3Cproquest_cross%3E2432872564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432872564&rft_id=info:pmid/&rfr_iscdi=true |