Recent Advances in Optical Engineering of Light‐Emitting Electrochemical Cells

Since the first demonstration of light‐emitting electrochemical cells (LECs) in 1995, much effort has been made to develop this technology for display and lighting. A common LEC generally contains a single emissive layer blended with a salt, which provides mobile ions under a bias. Ions accumulated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-08, Vol.30 (33), p.n/a
Hauptverfasser: Yang, Zu‐Po, Su, Hai‐Ching
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page
container_title Advanced functional materials
container_volume 30
creator Yang, Zu‐Po
Su, Hai‐Ching
description Since the first demonstration of light‐emitting electrochemical cells (LECs) in 1995, much effort has been made to develop this technology for display and lighting. A common LEC generally contains a single emissive layer blended with a salt, which provides mobile ions under a bias. Ions accumulated at electrodes facilitate electrochemical doping such that operation voltage is low even when employing high‐work‐function inert electrodes. The superior properties of simple device architecture, low‐voltage operation, and compatibility with inert metal electrode render LECs suitable for cost‐effective light‐emitting sources. In addition to enormous progress in developing novel emissive materials for LECs, optical engineering has been shown to improve device performance of LECs in an alternative way. Light outcoupling enhancement technologies recycle the trapped light and increase the light output from LECs. Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs and to optimize device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance of metal nanoparticles improves the intrinsic emission properties of emissive materials by optical means. These reported optical techniques are overviewed in this review. Light outcoupling enhancement technologies recycle trapped light and increase the light output from light‐emitting electrochemical cells (LECs). Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs for optimizing device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance generates desired emission properties.
doi_str_mv 10.1002/adfm.201906788
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2432872564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432872564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3838-3f14efd989dd4486265d6fe9145db1a4e224643f9f32a5919d4d8a91c42c858d3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKtb1wOup-Y2M8my1KkKlYoouAsxOWlT5lKTqdKdj-Az-iS2VurS1fk5fN858CN0TvCAYEwvtXX1gGIicV4IcYB6JCd5yjAVh_tMno_RSYwLjElRMN5D9w9goOmSoX3TjYGY-CaZLjtvdJWUzcw3AME3s6R1ycTP5t3Xx2dZ-67b7soKTBdaM4f6hx9BVcVTdOR0FeHsd_bR07h8HN2kk-n17Wg4SQ0TTKTMEQ7OSiGt5VzkNM9s7kASntkXojlQynPOnHSM6kwSabkVWhLDqRGZsKyPLnZ3l6F9XUHs1KJdhWbzUlHOqChotvH7aLCjTGhjDODUMvhah7UiWG1bU9vW1L61jSB3wruvYP0PrYZX47s_9xsSp3Fu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432872564</pqid></control><display><type>article</type><title>Recent Advances in Optical Engineering of Light‐Emitting Electrochemical Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Zu‐Po ; Su, Hai‐Ching</creator><creatorcontrib>Yang, Zu‐Po ; Su, Hai‐Ching</creatorcontrib><description>Since the first demonstration of light‐emitting electrochemical cells (LECs) in 1995, much effort has been made to develop this technology for display and lighting. A common LEC generally contains a single emissive layer blended with a salt, which provides mobile ions under a bias. Ions accumulated at electrodes facilitate electrochemical doping such that operation voltage is low even when employing high‐work‐function inert electrodes. The superior properties of simple device architecture, low‐voltage operation, and compatibility with inert metal electrode render LECs suitable for cost‐effective light‐emitting sources. In addition to enormous progress in developing novel emissive materials for LECs, optical engineering has been shown to improve device performance of LECs in an alternative way. Light outcoupling enhancement technologies recycle the trapped light and increase the light output from LECs. Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs and to optimize device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance of metal nanoparticles improves the intrinsic emission properties of emissive materials by optical means. These reported optical techniques are overviewed in this review. Light outcoupling enhancement technologies recycle trapped light and increase the light output from light‐emitting electrochemical cells (LECs). Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs for optimizing device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance generates desired emission properties.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201906788</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Computer architecture ; Electric potential ; Electrochemical cells ; Electrodes ; Emission analysis ; emission zone ; Emissivity ; Light ; light outcoupling ; light‐emitting electrochemical cells ; Materials science ; Nanoparticles ; optical engineering ; Optical properties ; Optics ; spectral tailoring ; Voltage</subject><ispartof>Advanced functional materials, 2020-08, Vol.30 (33), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3838-3f14efd989dd4486265d6fe9145db1a4e224643f9f32a5919d4d8a91c42c858d3</citedby><cites>FETCH-LOGICAL-c3838-3f14efd989dd4486265d6fe9145db1a4e224643f9f32a5919d4d8a91c42c858d3</cites><orcidid>0000-0003-1100-4712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201906788$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201906788$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yang, Zu‐Po</creatorcontrib><creatorcontrib>Su, Hai‐Ching</creatorcontrib><title>Recent Advances in Optical Engineering of Light‐Emitting Electrochemical Cells</title><title>Advanced functional materials</title><description>Since the first demonstration of light‐emitting electrochemical cells (LECs) in 1995, much effort has been made to develop this technology for display and lighting. A common LEC generally contains a single emissive layer blended with a salt, which provides mobile ions under a bias. Ions accumulated at electrodes facilitate electrochemical doping such that operation voltage is low even when employing high‐work‐function inert electrodes. The superior properties of simple device architecture, low‐voltage operation, and compatibility with inert metal electrode render LECs suitable for cost‐effective light‐emitting sources. In addition to enormous progress in developing novel emissive materials for LECs, optical engineering has been shown to improve device performance of LECs in an alternative way. Light outcoupling enhancement technologies recycle the trapped light and increase the light output from LECs. Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs and to optimize device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance of metal nanoparticles improves the intrinsic emission properties of emissive materials by optical means. These reported optical techniques are overviewed in this review. Light outcoupling enhancement technologies recycle trapped light and increase the light output from light‐emitting electrochemical cells (LECs). Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs for optimizing device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance generates desired emission properties.</description><subject>Computer architecture</subject><subject>Electric potential</subject><subject>Electrochemical cells</subject><subject>Electrodes</subject><subject>Emission analysis</subject><subject>emission zone</subject><subject>Emissivity</subject><subject>Light</subject><subject>light outcoupling</subject><subject>light‐emitting electrochemical cells</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>optical engineering</subject><subject>Optical properties</subject><subject>Optics</subject><subject>spectral tailoring</subject><subject>Voltage</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKtb1wOup-Y2M8my1KkKlYoouAsxOWlT5lKTqdKdj-Az-iS2VurS1fk5fN858CN0TvCAYEwvtXX1gGIicV4IcYB6JCd5yjAVh_tMno_RSYwLjElRMN5D9w9goOmSoX3TjYGY-CaZLjtvdJWUzcw3AME3s6R1ycTP5t3Xx2dZ-67b7soKTBdaM4f6hx9BVcVTdOR0FeHsd_bR07h8HN2kk-n17Wg4SQ0TTKTMEQ7OSiGt5VzkNM9s7kASntkXojlQynPOnHSM6kwSabkVWhLDqRGZsKyPLnZ3l6F9XUHs1KJdhWbzUlHOqChotvH7aLCjTGhjDODUMvhah7UiWG1bU9vW1L61jSB3wruvYP0PrYZX47s_9xsSp3Fu</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Yang, Zu‐Po</creator><creator>Su, Hai‐Ching</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1100-4712</orcidid></search><sort><creationdate>20200801</creationdate><title>Recent Advances in Optical Engineering of Light‐Emitting Electrochemical Cells</title><author>Yang, Zu‐Po ; Su, Hai‐Ching</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3838-3f14efd989dd4486265d6fe9145db1a4e224643f9f32a5919d4d8a91c42c858d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer architecture</topic><topic>Electric potential</topic><topic>Electrochemical cells</topic><topic>Electrodes</topic><topic>Emission analysis</topic><topic>emission zone</topic><topic>Emissivity</topic><topic>Light</topic><topic>light outcoupling</topic><topic>light‐emitting electrochemical cells</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>optical engineering</topic><topic>Optical properties</topic><topic>Optics</topic><topic>spectral tailoring</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zu‐Po</creatorcontrib><creatorcontrib>Su, Hai‐Ching</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zu‐Po</au><au>Su, Hai‐Ching</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Advances in Optical Engineering of Light‐Emitting Electrochemical Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>30</volume><issue>33</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Since the first demonstration of light‐emitting electrochemical cells (LECs) in 1995, much effort has been made to develop this technology for display and lighting. A common LEC generally contains a single emissive layer blended with a salt, which provides mobile ions under a bias. Ions accumulated at electrodes facilitate electrochemical doping such that operation voltage is low even when employing high‐work‐function inert electrodes. The superior properties of simple device architecture, low‐voltage operation, and compatibility with inert metal electrode render LECs suitable for cost‐effective light‐emitting sources. In addition to enormous progress in developing novel emissive materials for LECs, optical engineering has been shown to improve device performance of LECs in an alternative way. Light outcoupling enhancement technologies recycle the trapped light and increase the light output from LECs. Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs and to optimize device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance of metal nanoparticles improves the intrinsic emission properties of emissive materials by optical means. These reported optical techniques are overviewed in this review. Light outcoupling enhancement technologies recycle trapped light and increase the light output from light‐emitting electrochemical cells (LECs). Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs for optimizing device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance generates desired emission properties.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201906788</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-1100-4712</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-08, Vol.30 (33), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2432872564
source Wiley Online Library Journals Frontfile Complete
subjects Computer architecture
Electric potential
Electrochemical cells
Electrodes
Emission analysis
emission zone
Emissivity
Light
light outcoupling
light‐emitting electrochemical cells
Materials science
Nanoparticles
optical engineering
Optical properties
Optics
spectral tailoring
Voltage
title Recent Advances in Optical Engineering of Light‐Emitting Electrochemical Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Advances%20in%20Optical%20Engineering%20of%20Light%E2%80%90Emitting%20Electrochemical%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Yang,%20Zu%E2%80%90Po&rft.date=2020-08-01&rft.volume=30&rft.issue=33&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201906788&rft_dat=%3Cproquest_cross%3E2432872564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432872564&rft_id=info:pmid/&rfr_iscdi=true