Low‐Viscosity Limonene Dimethacrylate as a Bio‐Based Alternative to Bisphenol A‐Based Acrylic Monomers for Photocurable Thermosets and 3D Printing

Bisphenol A glycidyl methacrylate (BisGMA) is well established as photocurable resin in dental restoratives and 3D printing. At present there are raising concerns regarding the estrogen‐mimicking bisphenol A (BPA) contamination of health care and consumer products. It is an important challenge to su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular materials and engineering 2020-08, Vol.305 (8), p.n/a
Hauptverfasser: Schimpf, Vitalij, Asmacher, Anne, Fuchs, Andre, Stoll, Klaus, Bruchmann, Bernd, Mülhaupt, Rolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title Macromolecular materials and engineering
container_volume 305
creator Schimpf, Vitalij
Asmacher, Anne
Fuchs, Andre
Stoll, Klaus
Bruchmann, Bernd
Mülhaupt, Rolf
description Bisphenol A glycidyl methacrylate (BisGMA) is well established as photocurable resin in dental restoratives and 3D printing. At present there are raising concerns regarding the estrogen‐mimicking bisphenol A (BPA) contamination of health care and consumer products. It is an important challenge to substitute BPA‐based resins for bio‐based cycloaliphatic monomers while lowering resin viscosity without sacrificing high stiffness and glass temperature. Particularly high viscosity is critical for 3D printing by photopolymerization. Unlike BPA the cyclic monoterpene limonene, extracted from citrus fruit peels, is safe in human uses. Herein it is reported on limonene‐based dimethacrylate (LDMA) tailored for 3D printing application and derived from limonene oxide (LO) and methacrylic acid (MA). Residual MA is converted into glycerol dimethacrylate (GDMA) serving as an in situ reactive diluent. The influences of temperature, catalysts, MA/LO stoichiometry, and the addition of glycidyl methacrylate (GMA) and magnesium oxide on the LDMA‐based resin performance are elucidated. As compared to BisGMA (560 Pa s) LDMA‐based resins exhibit significantly lower viscosity (5–117 Pa s) governed by the MA/LDMA molar ratio and the GMA addition. At 30 wt% LDMA content photocured resin yields thermosets having high Young’s Modulus (3.4–3.7 GPa), tensile strength (88–98 MPa), and glass transition temperature (119–135 °C), surpassing the performance of the corresponding BisGMA‐based resins. The conversion of limonene oxide with methacrylic acid yields hydroxy‐functional limonene dimethacrylate (LDMA) exhibiting low resin viscosity. LDMA outperforms bisphenol A‐based resins and holds promise regarding applications in 3D printing and photocure of bio‐based thermosets.
doi_str_mv 10.1002/mame.202000210
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2432871802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432871802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4200-cf67f460e77fbe15cf002edfa800272348f1236168397f8a588a4701bee21be93</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhSMEEqWwMltiTrGdNHbGtOVPSkWHwhq56TVxlcTFdqmy8QiMPB9PgksRHVnuj-53rnROEFwSPCAY0-tGNDCgmGK_EHwU9EgcpSHFw_j4Z-Yhi1N6GpxZu8KYMJ5GveAz19uv949nZUttletQrhrdQgtoohpwlShNVwsHSFgk0EhpD4-EhSXKagemFU69AXLan-y6glbXKDsgO7Eq0VS3ugFjkdQGzSrtdLkxYlEDmldgGm3B-e_tEkUTNDOqdap9OQ9OpKgtXPz2fvB0ezMf34f5493DOMvDMvZOw1ImTMYJBsbkAsiwlN49LKXgvjMaxVwSGiUk4VHKJBdDzkXMMFkAUF_SqB9c7f-ujX7dgHXFSm-8r9oWNI4oZ4Rj6qnBniqNttaALNZGNcJ0BcHFLv1il37xl74XpHvBVtXQ_UMX02x6c9B-AzQOjR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432871802</pqid></control><display><type>article</type><title>Low‐Viscosity Limonene Dimethacrylate as a Bio‐Based Alternative to Bisphenol A‐Based Acrylic Monomers for Photocurable Thermosets and 3D Printing</title><source>Wiley Journals</source><creator>Schimpf, Vitalij ; Asmacher, Anne ; Fuchs, Andre ; Stoll, Klaus ; Bruchmann, Bernd ; Mülhaupt, Rolf</creator><creatorcontrib>Schimpf, Vitalij ; Asmacher, Anne ; Fuchs, Andre ; Stoll, Klaus ; Bruchmann, Bernd ; Mülhaupt, Rolf</creatorcontrib><description>Bisphenol A glycidyl methacrylate (BisGMA) is well established as photocurable resin in dental restoratives and 3D printing. At present there are raising concerns regarding the estrogen‐mimicking bisphenol A (BPA) contamination of health care and consumer products. It is an important challenge to substitute BPA‐based resins for bio‐based cycloaliphatic monomers while lowering resin viscosity without sacrificing high stiffness and glass temperature. Particularly high viscosity is critical for 3D printing by photopolymerization. Unlike BPA the cyclic monoterpene limonene, extracted from citrus fruit peels, is safe in human uses. Herein it is reported on limonene‐based dimethacrylate (LDMA) tailored for 3D printing application and derived from limonene oxide (LO) and methacrylic acid (MA). Residual MA is converted into glycerol dimethacrylate (GDMA) serving as an in situ reactive diluent. The influences of temperature, catalysts, MA/LO stoichiometry, and the addition of glycidyl methacrylate (GMA) and magnesium oxide on the LDMA‐based resin performance are elucidated. As compared to BisGMA (560 Pa s) LDMA‐based resins exhibit significantly lower viscosity (5–117 Pa s) governed by the MA/LDMA molar ratio and the GMA addition. At 30 wt% LDMA content photocured resin yields thermosets having high Young’s Modulus (3.4–3.7 GPa), tensile strength (88–98 MPa), and glass transition temperature (119–135 °C), surpassing the performance of the corresponding BisGMA‐based resins. The conversion of limonene oxide with methacrylic acid yields hydroxy‐functional limonene dimethacrylate (LDMA) exhibiting low resin viscosity. LDMA outperforms bisphenol A‐based resins and holds promise regarding applications in 3D printing and photocure of bio‐based thermosets.</description><identifier>ISSN: 1438-7492</identifier><identifier>EISSN: 1439-2054</identifier><identifier>DOI: 10.1002/mame.202000210</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>3-D printers ; 3D printing ; additive manufacturing ; bio‐based plastics ; Bisphenol A ; Bisphenol A glycidyl methacrylate ; Citrus fruits ; Dental materials ; Estrogens ; Glass transition temperature ; limonene ; Magnesium oxide ; Methacrylic acid ; Modulus of elasticity ; Monomers ; Photopolymerization ; Polymers ; Resins ; Stiffness ; Stoichiometry ; Superconductors (materials) ; Tensile strength ; Three dimensional printing ; Viscosity</subject><ispartof>Macromolecular materials and engineering, 2020-08, Vol.305 (8), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4200-cf67f460e77fbe15cf002edfa800272348f1236168397f8a588a4701bee21be93</citedby><cites>FETCH-LOGICAL-c4200-cf67f460e77fbe15cf002edfa800272348f1236168397f8a588a4701bee21be93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmame.202000210$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmame.202000210$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Schimpf, Vitalij</creatorcontrib><creatorcontrib>Asmacher, Anne</creatorcontrib><creatorcontrib>Fuchs, Andre</creatorcontrib><creatorcontrib>Stoll, Klaus</creatorcontrib><creatorcontrib>Bruchmann, Bernd</creatorcontrib><creatorcontrib>Mülhaupt, Rolf</creatorcontrib><title>Low‐Viscosity Limonene Dimethacrylate as a Bio‐Based Alternative to Bisphenol A‐Based Acrylic Monomers for Photocurable Thermosets and 3D Printing</title><title>Macromolecular materials and engineering</title><description>Bisphenol A glycidyl methacrylate (BisGMA) is well established as photocurable resin in dental restoratives and 3D printing. At present there are raising concerns regarding the estrogen‐mimicking bisphenol A (BPA) contamination of health care and consumer products. It is an important challenge to substitute BPA‐based resins for bio‐based cycloaliphatic monomers while lowering resin viscosity without sacrificing high stiffness and glass temperature. Particularly high viscosity is critical for 3D printing by photopolymerization. Unlike BPA the cyclic monoterpene limonene, extracted from citrus fruit peels, is safe in human uses. Herein it is reported on limonene‐based dimethacrylate (LDMA) tailored for 3D printing application and derived from limonene oxide (LO) and methacrylic acid (MA). Residual MA is converted into glycerol dimethacrylate (GDMA) serving as an in situ reactive diluent. The influences of temperature, catalysts, MA/LO stoichiometry, and the addition of glycidyl methacrylate (GMA) and magnesium oxide on the LDMA‐based resin performance are elucidated. As compared to BisGMA (560 Pa s) LDMA‐based resins exhibit significantly lower viscosity (5–117 Pa s) governed by the MA/LDMA molar ratio and the GMA addition. At 30 wt% LDMA content photocured resin yields thermosets having high Young’s Modulus (3.4–3.7 GPa), tensile strength (88–98 MPa), and glass transition temperature (119–135 °C), surpassing the performance of the corresponding BisGMA‐based resins. The conversion of limonene oxide with methacrylic acid yields hydroxy‐functional limonene dimethacrylate (LDMA) exhibiting low resin viscosity. LDMA outperforms bisphenol A‐based resins and holds promise regarding applications in 3D printing and photocure of bio‐based thermosets.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>additive manufacturing</subject><subject>bio‐based plastics</subject><subject>Bisphenol A</subject><subject>Bisphenol A glycidyl methacrylate</subject><subject>Citrus fruits</subject><subject>Dental materials</subject><subject>Estrogens</subject><subject>Glass transition temperature</subject><subject>limonene</subject><subject>Magnesium oxide</subject><subject>Methacrylic acid</subject><subject>Modulus of elasticity</subject><subject>Monomers</subject><subject>Photopolymerization</subject><subject>Polymers</subject><subject>Resins</subject><subject>Stiffness</subject><subject>Stoichiometry</subject><subject>Superconductors (materials)</subject><subject>Tensile strength</subject><subject>Three dimensional printing</subject><subject>Viscosity</subject><issn>1438-7492</issn><issn>1439-2054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkL1OwzAUhSMEEqWwMltiTrGdNHbGtOVPSkWHwhq56TVxlcTFdqmy8QiMPB9PgksRHVnuj-53rnROEFwSPCAY0-tGNDCgmGK_EHwU9EgcpSHFw_j4Z-Yhi1N6GpxZu8KYMJ5GveAz19uv949nZUttletQrhrdQgtoohpwlShNVwsHSFgk0EhpD4-EhSXKagemFU69AXLan-y6glbXKDsgO7Eq0VS3ugFjkdQGzSrtdLkxYlEDmldgGm3B-e_tEkUTNDOqdap9OQ9OpKgtXPz2fvB0ezMf34f5493DOMvDMvZOw1ImTMYJBsbkAsiwlN49LKXgvjMaxVwSGiUk4VHKJBdDzkXMMFkAUF_SqB9c7f-ujX7dgHXFSm-8r9oWNI4oZ4Rj6qnBniqNttaALNZGNcJ0BcHFLv1il37xl74XpHvBVtXQ_UMX02x6c9B-AzQOjR8</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Schimpf, Vitalij</creator><creator>Asmacher, Anne</creator><creator>Fuchs, Andre</creator><creator>Stoll, Klaus</creator><creator>Bruchmann, Bernd</creator><creator>Mülhaupt, Rolf</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202008</creationdate><title>Low‐Viscosity Limonene Dimethacrylate as a Bio‐Based Alternative to Bisphenol A‐Based Acrylic Monomers for Photocurable Thermosets and 3D Printing</title><author>Schimpf, Vitalij ; Asmacher, Anne ; Fuchs, Andre ; Stoll, Klaus ; Bruchmann, Bernd ; Mülhaupt, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4200-cf67f460e77fbe15cf002edfa800272348f1236168397f8a588a4701bee21be93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>additive manufacturing</topic><topic>bio‐based plastics</topic><topic>Bisphenol A</topic><topic>Bisphenol A glycidyl methacrylate</topic><topic>Citrus fruits</topic><topic>Dental materials</topic><topic>Estrogens</topic><topic>Glass transition temperature</topic><topic>limonene</topic><topic>Magnesium oxide</topic><topic>Methacrylic acid</topic><topic>Modulus of elasticity</topic><topic>Monomers</topic><topic>Photopolymerization</topic><topic>Polymers</topic><topic>Resins</topic><topic>Stiffness</topic><topic>Stoichiometry</topic><topic>Superconductors (materials)</topic><topic>Tensile strength</topic><topic>Three dimensional printing</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schimpf, Vitalij</creatorcontrib><creatorcontrib>Asmacher, Anne</creatorcontrib><creatorcontrib>Fuchs, Andre</creatorcontrib><creatorcontrib>Stoll, Klaus</creatorcontrib><creatorcontrib>Bruchmann, Bernd</creatorcontrib><creatorcontrib>Mülhaupt, Rolf</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Macromolecular materials and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schimpf, Vitalij</au><au>Asmacher, Anne</au><au>Fuchs, Andre</au><au>Stoll, Klaus</au><au>Bruchmann, Bernd</au><au>Mülhaupt, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low‐Viscosity Limonene Dimethacrylate as a Bio‐Based Alternative to Bisphenol A‐Based Acrylic Monomers for Photocurable Thermosets and 3D Printing</atitle><jtitle>Macromolecular materials and engineering</jtitle><date>2020-08</date><risdate>2020</risdate><volume>305</volume><issue>8</issue><epage>n/a</epage><issn>1438-7492</issn><eissn>1439-2054</eissn><abstract>Bisphenol A glycidyl methacrylate (BisGMA) is well established as photocurable resin in dental restoratives and 3D printing. At present there are raising concerns regarding the estrogen‐mimicking bisphenol A (BPA) contamination of health care and consumer products. It is an important challenge to substitute BPA‐based resins for bio‐based cycloaliphatic monomers while lowering resin viscosity without sacrificing high stiffness and glass temperature. Particularly high viscosity is critical for 3D printing by photopolymerization. Unlike BPA the cyclic monoterpene limonene, extracted from citrus fruit peels, is safe in human uses. Herein it is reported on limonene‐based dimethacrylate (LDMA) tailored for 3D printing application and derived from limonene oxide (LO) and methacrylic acid (MA). Residual MA is converted into glycerol dimethacrylate (GDMA) serving as an in situ reactive diluent. The influences of temperature, catalysts, MA/LO stoichiometry, and the addition of glycidyl methacrylate (GMA) and magnesium oxide on the LDMA‐based resin performance are elucidated. As compared to BisGMA (560 Pa s) LDMA‐based resins exhibit significantly lower viscosity (5–117 Pa s) governed by the MA/LDMA molar ratio and the GMA addition. At 30 wt% LDMA content photocured resin yields thermosets having high Young’s Modulus (3.4–3.7 GPa), tensile strength (88–98 MPa), and glass transition temperature (119–135 °C), surpassing the performance of the corresponding BisGMA‐based resins. The conversion of limonene oxide with methacrylic acid yields hydroxy‐functional limonene dimethacrylate (LDMA) exhibiting low resin viscosity. LDMA outperforms bisphenol A‐based resins and holds promise regarding applications in 3D printing and photocure of bio‐based thermosets.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/mame.202000210</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1438-7492
ispartof Macromolecular materials and engineering, 2020-08, Vol.305 (8), p.n/a
issn 1438-7492
1439-2054
language eng
recordid cdi_proquest_journals_2432871802
source Wiley Journals
subjects 3-D printers
3D printing
additive manufacturing
bio‐based plastics
Bisphenol A
Bisphenol A glycidyl methacrylate
Citrus fruits
Dental materials
Estrogens
Glass transition temperature
limonene
Magnesium oxide
Methacrylic acid
Modulus of elasticity
Monomers
Photopolymerization
Polymers
Resins
Stiffness
Stoichiometry
Superconductors (materials)
Tensile strength
Three dimensional printing
Viscosity
title Low‐Viscosity Limonene Dimethacrylate as a Bio‐Based Alternative to Bisphenol A‐Based Acrylic Monomers for Photocurable Thermosets and 3D Printing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%E2%80%90Viscosity%20Limonene%20Dimethacrylate%20as%20a%20Bio%E2%80%90Based%20Alternative%20to%20Bisphenol%20A%E2%80%90Based%20Acrylic%20Monomers%20for%20Photocurable%20Thermosets%20and%203D%20Printing&rft.jtitle=Macromolecular%20materials%20and%20engineering&rft.au=Schimpf,%20Vitalij&rft.date=2020-08&rft.volume=305&rft.issue=8&rft.epage=n/a&rft.issn=1438-7492&rft.eissn=1439-2054&rft_id=info:doi/10.1002/mame.202000210&rft_dat=%3Cproquest_cross%3E2432871802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432871802&rft_id=info:pmid/&rfr_iscdi=true