Low‐Viscosity Limonene Dimethacrylate as a Bio‐Based Alternative to Bisphenol A‐Based Acrylic Monomers for Photocurable Thermosets and 3D Printing
Bisphenol A glycidyl methacrylate (BisGMA) is well established as photocurable resin in dental restoratives and 3D printing. At present there are raising concerns regarding the estrogen‐mimicking bisphenol A (BPA) contamination of health care and consumer products. It is an important challenge to su...
Gespeichert in:
Veröffentlicht in: | Macromolecular materials and engineering 2020-08, Vol.305 (8), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Macromolecular materials and engineering |
container_volume | 305 |
creator | Schimpf, Vitalij Asmacher, Anne Fuchs, Andre Stoll, Klaus Bruchmann, Bernd Mülhaupt, Rolf |
description | Bisphenol A glycidyl methacrylate (BisGMA) is well established as photocurable resin in dental restoratives and 3D printing. At present there are raising concerns regarding the estrogen‐mimicking bisphenol A (BPA) contamination of health care and consumer products. It is an important challenge to substitute BPA‐based resins for bio‐based cycloaliphatic monomers while lowering resin viscosity without sacrificing high stiffness and glass temperature. Particularly high viscosity is critical for 3D printing by photopolymerization. Unlike BPA the cyclic monoterpene limonene, extracted from citrus fruit peels, is safe in human uses. Herein it is reported on limonene‐based dimethacrylate (LDMA) tailored for 3D printing application and derived from limonene oxide (LO) and methacrylic acid (MA). Residual MA is converted into glycerol dimethacrylate (GDMA) serving as an in situ reactive diluent. The influences of temperature, catalysts, MA/LO stoichiometry, and the addition of glycidyl methacrylate (GMA) and magnesium oxide on the LDMA‐based resin performance are elucidated. As compared to BisGMA (560 Pa s) LDMA‐based resins exhibit significantly lower viscosity (5–117 Pa s) governed by the MA/LDMA molar ratio and the GMA addition. At 30 wt% LDMA content photocured resin yields thermosets having high Young’s Modulus (3.4–3.7 GPa), tensile strength (88–98 MPa), and glass transition temperature (119–135 °C), surpassing the performance of the corresponding BisGMA‐based resins.
The conversion of limonene oxide with methacrylic acid yields hydroxy‐functional limonene dimethacrylate (LDMA) exhibiting low resin viscosity. LDMA outperforms bisphenol A‐based resins and holds promise regarding applications in 3D printing and photocure of bio‐based thermosets. |
doi_str_mv | 10.1002/mame.202000210 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2432871802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432871802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4200-cf67f460e77fbe15cf002edfa800272348f1236168397f8a588a4701bee21be93</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhSMEEqWwMltiTrGdNHbGtOVPSkWHwhq56TVxlcTFdqmy8QiMPB9PgksRHVnuj-53rnROEFwSPCAY0-tGNDCgmGK_EHwU9EgcpSHFw_j4Z-Yhi1N6GpxZu8KYMJ5GveAz19uv949nZUttletQrhrdQgtoohpwlShNVwsHSFgk0EhpD4-EhSXKagemFU69AXLan-y6glbXKDsgO7Eq0VS3ugFjkdQGzSrtdLkxYlEDmldgGm3B-e_tEkUTNDOqdap9OQ9OpKgtXPz2fvB0ezMf34f5493DOMvDMvZOw1ImTMYJBsbkAsiwlN49LKXgvjMaxVwSGiUk4VHKJBdDzkXMMFkAUF_SqB9c7f-ujX7dgHXFSm-8r9oWNI4oZ4Rj6qnBniqNttaALNZGNcJ0BcHFLv1il37xl74XpHvBVtXQ_UMX02x6c9B-AzQOjR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432871802</pqid></control><display><type>article</type><title>Low‐Viscosity Limonene Dimethacrylate as a Bio‐Based Alternative to Bisphenol A‐Based Acrylic Monomers for Photocurable Thermosets and 3D Printing</title><source>Wiley Journals</source><creator>Schimpf, Vitalij ; Asmacher, Anne ; Fuchs, Andre ; Stoll, Klaus ; Bruchmann, Bernd ; Mülhaupt, Rolf</creator><creatorcontrib>Schimpf, Vitalij ; Asmacher, Anne ; Fuchs, Andre ; Stoll, Klaus ; Bruchmann, Bernd ; Mülhaupt, Rolf</creatorcontrib><description>Bisphenol A glycidyl methacrylate (BisGMA) is well established as photocurable resin in dental restoratives and 3D printing. At present there are raising concerns regarding the estrogen‐mimicking bisphenol A (BPA) contamination of health care and consumer products. It is an important challenge to substitute BPA‐based resins for bio‐based cycloaliphatic monomers while lowering resin viscosity without sacrificing high stiffness and glass temperature. Particularly high viscosity is critical for 3D printing by photopolymerization. Unlike BPA the cyclic monoterpene limonene, extracted from citrus fruit peels, is safe in human uses. Herein it is reported on limonene‐based dimethacrylate (LDMA) tailored for 3D printing application and derived from limonene oxide (LO) and methacrylic acid (MA). Residual MA is converted into glycerol dimethacrylate (GDMA) serving as an in situ reactive diluent. The influences of temperature, catalysts, MA/LO stoichiometry, and the addition of glycidyl methacrylate (GMA) and magnesium oxide on the LDMA‐based resin performance are elucidated. As compared to BisGMA (560 Pa s) LDMA‐based resins exhibit significantly lower viscosity (5–117 Pa s) governed by the MA/LDMA molar ratio and the GMA addition. At 30 wt% LDMA content photocured resin yields thermosets having high Young’s Modulus (3.4–3.7 GPa), tensile strength (88–98 MPa), and glass transition temperature (119–135 °C), surpassing the performance of the corresponding BisGMA‐based resins.
The conversion of limonene oxide with methacrylic acid yields hydroxy‐functional limonene dimethacrylate (LDMA) exhibiting low resin viscosity. LDMA outperforms bisphenol A‐based resins and holds promise regarding applications in 3D printing and photocure of bio‐based thermosets.</description><identifier>ISSN: 1438-7492</identifier><identifier>EISSN: 1439-2054</identifier><identifier>DOI: 10.1002/mame.202000210</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>3-D printers ; 3D printing ; additive manufacturing ; bio‐based plastics ; Bisphenol A ; Bisphenol A glycidyl methacrylate ; Citrus fruits ; Dental materials ; Estrogens ; Glass transition temperature ; limonene ; Magnesium oxide ; Methacrylic acid ; Modulus of elasticity ; Monomers ; Photopolymerization ; Polymers ; Resins ; Stiffness ; Stoichiometry ; Superconductors (materials) ; Tensile strength ; Three dimensional printing ; Viscosity</subject><ispartof>Macromolecular materials and engineering, 2020-08, Vol.305 (8), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4200-cf67f460e77fbe15cf002edfa800272348f1236168397f8a588a4701bee21be93</citedby><cites>FETCH-LOGICAL-c4200-cf67f460e77fbe15cf002edfa800272348f1236168397f8a588a4701bee21be93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmame.202000210$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmame.202000210$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Schimpf, Vitalij</creatorcontrib><creatorcontrib>Asmacher, Anne</creatorcontrib><creatorcontrib>Fuchs, Andre</creatorcontrib><creatorcontrib>Stoll, Klaus</creatorcontrib><creatorcontrib>Bruchmann, Bernd</creatorcontrib><creatorcontrib>Mülhaupt, Rolf</creatorcontrib><title>Low‐Viscosity Limonene Dimethacrylate as a Bio‐Based Alternative to Bisphenol A‐Based Acrylic Monomers for Photocurable Thermosets and 3D Printing</title><title>Macromolecular materials and engineering</title><description>Bisphenol A glycidyl methacrylate (BisGMA) is well established as photocurable resin in dental restoratives and 3D printing. At present there are raising concerns regarding the estrogen‐mimicking bisphenol A (BPA) contamination of health care and consumer products. It is an important challenge to substitute BPA‐based resins for bio‐based cycloaliphatic monomers while lowering resin viscosity without sacrificing high stiffness and glass temperature. Particularly high viscosity is critical for 3D printing by photopolymerization. Unlike BPA the cyclic monoterpene limonene, extracted from citrus fruit peels, is safe in human uses. Herein it is reported on limonene‐based dimethacrylate (LDMA) tailored for 3D printing application and derived from limonene oxide (LO) and methacrylic acid (MA). Residual MA is converted into glycerol dimethacrylate (GDMA) serving as an in situ reactive diluent. The influences of temperature, catalysts, MA/LO stoichiometry, and the addition of glycidyl methacrylate (GMA) and magnesium oxide on the LDMA‐based resin performance are elucidated. As compared to BisGMA (560 Pa s) LDMA‐based resins exhibit significantly lower viscosity (5–117 Pa s) governed by the MA/LDMA molar ratio and the GMA addition. At 30 wt% LDMA content photocured resin yields thermosets having high Young’s Modulus (3.4–3.7 GPa), tensile strength (88–98 MPa), and glass transition temperature (119–135 °C), surpassing the performance of the corresponding BisGMA‐based resins.
The conversion of limonene oxide with methacrylic acid yields hydroxy‐functional limonene dimethacrylate (LDMA) exhibiting low resin viscosity. LDMA outperforms bisphenol A‐based resins and holds promise regarding applications in 3D printing and photocure of bio‐based thermosets.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>additive manufacturing</subject><subject>bio‐based plastics</subject><subject>Bisphenol A</subject><subject>Bisphenol A glycidyl methacrylate</subject><subject>Citrus fruits</subject><subject>Dental materials</subject><subject>Estrogens</subject><subject>Glass transition temperature</subject><subject>limonene</subject><subject>Magnesium oxide</subject><subject>Methacrylic acid</subject><subject>Modulus of elasticity</subject><subject>Monomers</subject><subject>Photopolymerization</subject><subject>Polymers</subject><subject>Resins</subject><subject>Stiffness</subject><subject>Stoichiometry</subject><subject>Superconductors (materials)</subject><subject>Tensile strength</subject><subject>Three dimensional printing</subject><subject>Viscosity</subject><issn>1438-7492</issn><issn>1439-2054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkL1OwzAUhSMEEqWwMltiTrGdNHbGtOVPSkWHwhq56TVxlcTFdqmy8QiMPB9PgksRHVnuj-53rnROEFwSPCAY0-tGNDCgmGK_EHwU9EgcpSHFw_j4Z-Yhi1N6GpxZu8KYMJ5GveAz19uv949nZUttletQrhrdQgtoohpwlShNVwsHSFgk0EhpD4-EhSXKagemFU69AXLan-y6glbXKDsgO7Eq0VS3ugFjkdQGzSrtdLkxYlEDmldgGm3B-e_tEkUTNDOqdap9OQ9OpKgtXPz2fvB0ezMf34f5493DOMvDMvZOw1ImTMYJBsbkAsiwlN49LKXgvjMaxVwSGiUk4VHKJBdDzkXMMFkAUF_SqB9c7f-ujX7dgHXFSm-8r9oWNI4oZ4Rj6qnBniqNttaALNZGNcJ0BcHFLv1il37xl74XpHvBVtXQ_UMX02x6c9B-AzQOjR8</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Schimpf, Vitalij</creator><creator>Asmacher, Anne</creator><creator>Fuchs, Andre</creator><creator>Stoll, Klaus</creator><creator>Bruchmann, Bernd</creator><creator>Mülhaupt, Rolf</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202008</creationdate><title>Low‐Viscosity Limonene Dimethacrylate as a Bio‐Based Alternative to Bisphenol A‐Based Acrylic Monomers for Photocurable Thermosets and 3D Printing</title><author>Schimpf, Vitalij ; Asmacher, Anne ; Fuchs, Andre ; Stoll, Klaus ; Bruchmann, Bernd ; Mülhaupt, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4200-cf67f460e77fbe15cf002edfa800272348f1236168397f8a588a4701bee21be93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>additive manufacturing</topic><topic>bio‐based plastics</topic><topic>Bisphenol A</topic><topic>Bisphenol A glycidyl methacrylate</topic><topic>Citrus fruits</topic><topic>Dental materials</topic><topic>Estrogens</topic><topic>Glass transition temperature</topic><topic>limonene</topic><topic>Magnesium oxide</topic><topic>Methacrylic acid</topic><topic>Modulus of elasticity</topic><topic>Monomers</topic><topic>Photopolymerization</topic><topic>Polymers</topic><topic>Resins</topic><topic>Stiffness</topic><topic>Stoichiometry</topic><topic>Superconductors (materials)</topic><topic>Tensile strength</topic><topic>Three dimensional printing</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schimpf, Vitalij</creatorcontrib><creatorcontrib>Asmacher, Anne</creatorcontrib><creatorcontrib>Fuchs, Andre</creatorcontrib><creatorcontrib>Stoll, Klaus</creatorcontrib><creatorcontrib>Bruchmann, Bernd</creatorcontrib><creatorcontrib>Mülhaupt, Rolf</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Macromolecular materials and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schimpf, Vitalij</au><au>Asmacher, Anne</au><au>Fuchs, Andre</au><au>Stoll, Klaus</au><au>Bruchmann, Bernd</au><au>Mülhaupt, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low‐Viscosity Limonene Dimethacrylate as a Bio‐Based Alternative to Bisphenol A‐Based Acrylic Monomers for Photocurable Thermosets and 3D Printing</atitle><jtitle>Macromolecular materials and engineering</jtitle><date>2020-08</date><risdate>2020</risdate><volume>305</volume><issue>8</issue><epage>n/a</epage><issn>1438-7492</issn><eissn>1439-2054</eissn><abstract>Bisphenol A glycidyl methacrylate (BisGMA) is well established as photocurable resin in dental restoratives and 3D printing. At present there are raising concerns regarding the estrogen‐mimicking bisphenol A (BPA) contamination of health care and consumer products. It is an important challenge to substitute BPA‐based resins for bio‐based cycloaliphatic monomers while lowering resin viscosity without sacrificing high stiffness and glass temperature. Particularly high viscosity is critical for 3D printing by photopolymerization. Unlike BPA the cyclic monoterpene limonene, extracted from citrus fruit peels, is safe in human uses. Herein it is reported on limonene‐based dimethacrylate (LDMA) tailored for 3D printing application and derived from limonene oxide (LO) and methacrylic acid (MA). Residual MA is converted into glycerol dimethacrylate (GDMA) serving as an in situ reactive diluent. The influences of temperature, catalysts, MA/LO stoichiometry, and the addition of glycidyl methacrylate (GMA) and magnesium oxide on the LDMA‐based resin performance are elucidated. As compared to BisGMA (560 Pa s) LDMA‐based resins exhibit significantly lower viscosity (5–117 Pa s) governed by the MA/LDMA molar ratio and the GMA addition. At 30 wt% LDMA content photocured resin yields thermosets having high Young’s Modulus (3.4–3.7 GPa), tensile strength (88–98 MPa), and glass transition temperature (119–135 °C), surpassing the performance of the corresponding BisGMA‐based resins.
The conversion of limonene oxide with methacrylic acid yields hydroxy‐functional limonene dimethacrylate (LDMA) exhibiting low resin viscosity. LDMA outperforms bisphenol A‐based resins and holds promise regarding applications in 3D printing and photocure of bio‐based thermosets.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/mame.202000210</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-7492 |
ispartof | Macromolecular materials and engineering, 2020-08, Vol.305 (8), p.n/a |
issn | 1438-7492 1439-2054 |
language | eng |
recordid | cdi_proquest_journals_2432871802 |
source | Wiley Journals |
subjects | 3-D printers 3D printing additive manufacturing bio‐based plastics Bisphenol A Bisphenol A glycidyl methacrylate Citrus fruits Dental materials Estrogens Glass transition temperature limonene Magnesium oxide Methacrylic acid Modulus of elasticity Monomers Photopolymerization Polymers Resins Stiffness Stoichiometry Superconductors (materials) Tensile strength Three dimensional printing Viscosity |
title | Low‐Viscosity Limonene Dimethacrylate as a Bio‐Based Alternative to Bisphenol A‐Based Acrylic Monomers for Photocurable Thermosets and 3D Printing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%E2%80%90Viscosity%20Limonene%20Dimethacrylate%20as%20a%20Bio%E2%80%90Based%20Alternative%20to%20Bisphenol%20A%E2%80%90Based%20Acrylic%20Monomers%20for%20Photocurable%20Thermosets%20and%203D%20Printing&rft.jtitle=Macromolecular%20materials%20and%20engineering&rft.au=Schimpf,%20Vitalij&rft.date=2020-08&rft.volume=305&rft.issue=8&rft.epage=n/a&rft.issn=1438-7492&rft.eissn=1439-2054&rft_id=info:doi/10.1002/mame.202000210&rft_dat=%3Cproquest_cross%3E2432871802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432871802&rft_id=info:pmid/&rfr_iscdi=true |