Scaling of Multi-contact Phase Change Device for Toggle Logic Operations

Scaling of two dimensional six-contact phase change devices that can perform toggle logic operations is analyzed through 2D electrothermal simulations with dynamic materials modeling, integrated with CMOS access circuitry. Toggle configurations are achieved through a combination of isolation of some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-08
Hauptverfasser: Raihan Sayeed Khan, Kanan, Nadim H, Scoggin, Jake, Silva, Helena, Gokirmak, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scaling of two dimensional six-contact phase change devices that can perform toggle logic operations is analyzed through 2D electrothermal simulations with dynamic materials modeling, integrated with CMOS access circuitry. Toggle configurations are achieved through a combination of isolation of some contacts from others using amorphous regions and coupling between different regions via thermal crosstalk. Use of thermal crosstalk as a coupling mechanism in a multi-contact device in the memory layer allows implementation of analog routing and digital logic operations at a significantly lower transistor count, with the added benefit of non-volatility. Simulation results show approximately linear improvement in peak current and voltage requirements with thickness scaling.
ISSN:2331-8422