Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes
Multi-walled carbon nanotubes (MWCNTs)/waterborne acrylic resin nanocomposite coatings were synthesized by a solution mixing method using 3-aminopropyltriethoxysilane (KH-550) coupling agent as the curing agent. The improvements on thermostability, conductibility, mechanical performances, and hydrop...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2020-06, Vol.200, p.122547, Article 122547 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 122547 |
container_title | Polymer (Guilford) |
container_volume | 200 |
creator | Wu, Mingyang Ge, Shengsong Jiao, Cuiyan Yan, Zhangyin Jiang, Heyun Zhu, Yunfeng Dong, Binbin Dong, Mengyao Guo, Zhanhu |
description | Multi-walled carbon nanotubes (MWCNTs)/waterborne acrylic resin nanocomposite coatings were synthesized by a solution mixing method using 3-aminopropyltriethoxysilane (KH-550) coupling agent as the curing agent. The improvements on thermostability, conductibility, mechanical performances, and hydrophobicity of the as-prepared composite coatings were evaluated. The conductivity was improved by six orders of magnitude compared to pure waterborne acrylic resin. CNTs greatly enhanced the thermostability and reduced the curing temperature. The tensile test showed that the introduction of CNTs significantly enhanced the mechanical performances of the resin. The sample with 5 wt% CNTs exhibited the largest tensile strength, which was higher than pure resin. Moreover, the coating had an improved surface hydrophobicity. 6 wt% CNTs increased the contact angle of the coating from 81.32° to about 90°.
[Display omitted]
•Carboxylated CNTs/waterborne acrylic resin modified with gycidyl methacrylate (GMA) was firstly prepared.•3-aminopropyltriethoxysilane (KH-550) was used not only as a coupling agent but also as a curing agent.•The added CNTs significantly improved the electrical conductivity.•The added CNTs significantly enhanced thermal stability and tensile strength of coating. |
doi_str_mv | 10.1016/j.polymer.2020.122547 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2432558498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386120303797</els_id><sourcerecordid>2432558498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-903e3b9222eb7e9ff917e0f26d4c824c30fae6ed4a077b2bb9620ddb3cb0ec1f3</originalsourceid><addsrcrecordid>eNqFUclqHDEQFSGBTOx8QkCQSwLpsZZeT8GYxDY4-OKchZZqtwa11JE0Nv0_-dBo3L7nVEXVW6h6CH2iZE8JbS8O-yW4dYa4Z4SVGWNN3b1BO9p3vGJsoG_RjhDOKt639D36kNKBEMIaVu_Q39t5ieHJ-kcMDnSOVkv3Dc-gJ-m3Pk8QZ-mw9AZPq4lhmYKyGhfeAjFbSDiM-FlmiCpED1jquLoCiJCsrx7dqq1ZXdHM08uqIPGX61-XX7FasTTmZD4fXbbVs3QODNayKHnspQ_5qCCdo3ejdAk-vtYz9Pvnj4erm-ru_vr26vKu0px3uRoIB64GxhioDoZxHGgHZGStqXXPas3JKKEFU0vSdYopNbSMGKO4VgQ0HfkZ-rzpltP-HCFlcQjH6IulYDVnTdPXQ19QzYbSMaQUYRRLtLOMq6BEnAIRB_EaiDgFIrZACu_7xoNywpMt26QteA3GxvJ5YYL9j8I_dlGbqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432558498</pqid></control><display><type>article</type><title>Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes</title><source>Elsevier ScienceDirect Journals</source><creator>Wu, Mingyang ; Ge, Shengsong ; Jiao, Cuiyan ; Yan, Zhangyin ; Jiang, Heyun ; Zhu, Yunfeng ; Dong, Binbin ; Dong, Mengyao ; Guo, Zhanhu</creator><creatorcontrib>Wu, Mingyang ; Ge, Shengsong ; Jiao, Cuiyan ; Yan, Zhangyin ; Jiang, Heyun ; Zhu, Yunfeng ; Dong, Binbin ; Dong, Mengyao ; Guo, Zhanhu</creatorcontrib><description>Multi-walled carbon nanotubes (MWCNTs)/waterborne acrylic resin nanocomposite coatings were synthesized by a solution mixing method using 3-aminopropyltriethoxysilane (KH-550) coupling agent as the curing agent. The improvements on thermostability, conductibility, mechanical performances, and hydrophobicity of the as-prepared composite coatings were evaluated. The conductivity was improved by six orders of magnitude compared to pure waterborne acrylic resin. CNTs greatly enhanced the thermostability and reduced the curing temperature. The tensile test showed that the introduction of CNTs significantly enhanced the mechanical performances of the resin. The sample with 5 wt% CNTs exhibited the largest tensile strength, which was higher than pure resin. Moreover, the coating had an improved surface hydrophobicity. 6 wt% CNTs increased the contact angle of the coating from 81.32° to about 90°.
[Display omitted]
•Carboxylated CNTs/waterborne acrylic resin modified with gycidyl methacrylate (GMA) was firstly prepared.•3-aminopropyltriethoxysilane (KH-550) was used not only as a coupling agent but also as a curing agent.•The added CNTs significantly improved the electrical conductivity.•The added CNTs significantly enhanced thermal stability and tensile strength of coating.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2020.122547</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>3-aminopropyltriethoxysilane ; Acrylic resins ; Aminopropyltriethoxysilane ; Coatings ; Contact angle ; Coupling agents ; Curing ; Curing agents ; Electric contacts ; Electrical resistivity ; Hydrophobicity ; Multi wall carbon nanotubes ; Multi-walled carbon nanotube ; Nanocomposites ; Nanocomposites coating ; Nanotechnology ; Nanotubes ; Properties ; Tensile strength ; Tensile tests ; Thermal stability ; Waterborne acrylic resin</subject><ispartof>Polymer (Guilford), 2020-06, Vol.200, p.122547, Article 122547</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 18, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-903e3b9222eb7e9ff917e0f26d4c824c30fae6ed4a077b2bb9620ddb3cb0ec1f3</citedby><cites>FETCH-LOGICAL-c337t-903e3b9222eb7e9ff917e0f26d4c824c30fae6ed4a077b2bb9620ddb3cb0ec1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2020.122547$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Wu, Mingyang</creatorcontrib><creatorcontrib>Ge, Shengsong</creatorcontrib><creatorcontrib>Jiao, Cuiyan</creatorcontrib><creatorcontrib>Yan, Zhangyin</creatorcontrib><creatorcontrib>Jiang, Heyun</creatorcontrib><creatorcontrib>Zhu, Yunfeng</creatorcontrib><creatorcontrib>Dong, Binbin</creatorcontrib><creatorcontrib>Dong, Mengyao</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><title>Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes</title><title>Polymer (Guilford)</title><description>Multi-walled carbon nanotubes (MWCNTs)/waterborne acrylic resin nanocomposite coatings were synthesized by a solution mixing method using 3-aminopropyltriethoxysilane (KH-550) coupling agent as the curing agent. The improvements on thermostability, conductibility, mechanical performances, and hydrophobicity of the as-prepared composite coatings were evaluated. The conductivity was improved by six orders of magnitude compared to pure waterborne acrylic resin. CNTs greatly enhanced the thermostability and reduced the curing temperature. The tensile test showed that the introduction of CNTs significantly enhanced the mechanical performances of the resin. The sample with 5 wt% CNTs exhibited the largest tensile strength, which was higher than pure resin. Moreover, the coating had an improved surface hydrophobicity. 6 wt% CNTs increased the contact angle of the coating from 81.32° to about 90°.
[Display omitted]
•Carboxylated CNTs/waterborne acrylic resin modified with gycidyl methacrylate (GMA) was firstly prepared.•3-aminopropyltriethoxysilane (KH-550) was used not only as a coupling agent but also as a curing agent.•The added CNTs significantly improved the electrical conductivity.•The added CNTs significantly enhanced thermal stability and tensile strength of coating.</description><subject>3-aminopropyltriethoxysilane</subject><subject>Acrylic resins</subject><subject>Aminopropyltriethoxysilane</subject><subject>Coatings</subject><subject>Contact angle</subject><subject>Coupling agents</subject><subject>Curing</subject><subject>Curing agents</subject><subject>Electric contacts</subject><subject>Electrical resistivity</subject><subject>Hydrophobicity</subject><subject>Multi wall carbon nanotubes</subject><subject>Multi-walled carbon nanotube</subject><subject>Nanocomposites</subject><subject>Nanocomposites coating</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Properties</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Thermal stability</subject><subject>Waterborne acrylic resin</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUclqHDEQFSGBTOx8QkCQSwLpsZZeT8GYxDY4-OKchZZqtwa11JE0Nv0_-dBo3L7nVEXVW6h6CH2iZE8JbS8O-yW4dYa4Z4SVGWNN3b1BO9p3vGJsoG_RjhDOKt639D36kNKBEMIaVu_Q39t5ieHJ-kcMDnSOVkv3Dc-gJ-m3Pk8QZ-mw9AZPq4lhmYKyGhfeAjFbSDiM-FlmiCpED1jquLoCiJCsrx7dqq1ZXdHM08uqIPGX61-XX7FasTTmZD4fXbbVs3QODNayKHnspQ_5qCCdo3ejdAk-vtYz9Pvnj4erm-ru_vr26vKu0px3uRoIB64GxhioDoZxHGgHZGStqXXPas3JKKEFU0vSdYopNbSMGKO4VgQ0HfkZ-rzpltP-HCFlcQjH6IulYDVnTdPXQ19QzYbSMaQUYRRLtLOMq6BEnAIRB_EaiDgFIrZACu_7xoNywpMt26QteA3GxvJ5YYL9j8I_dlGbqg</recordid><startdate>20200618</startdate><enddate>20200618</enddate><creator>Wu, Mingyang</creator><creator>Ge, Shengsong</creator><creator>Jiao, Cuiyan</creator><creator>Yan, Zhangyin</creator><creator>Jiang, Heyun</creator><creator>Zhu, Yunfeng</creator><creator>Dong, Binbin</creator><creator>Dong, Mengyao</creator><creator>Guo, Zhanhu</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20200618</creationdate><title>Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes</title><author>Wu, Mingyang ; Ge, Shengsong ; Jiao, Cuiyan ; Yan, Zhangyin ; Jiang, Heyun ; Zhu, Yunfeng ; Dong, Binbin ; Dong, Mengyao ; Guo, Zhanhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-903e3b9222eb7e9ff917e0f26d4c824c30fae6ed4a077b2bb9620ddb3cb0ec1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-aminopropyltriethoxysilane</topic><topic>Acrylic resins</topic><topic>Aminopropyltriethoxysilane</topic><topic>Coatings</topic><topic>Contact angle</topic><topic>Coupling agents</topic><topic>Curing</topic><topic>Curing agents</topic><topic>Electric contacts</topic><topic>Electrical resistivity</topic><topic>Hydrophobicity</topic><topic>Multi wall carbon nanotubes</topic><topic>Multi-walled carbon nanotube</topic><topic>Nanocomposites</topic><topic>Nanocomposites coating</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Properties</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Thermal stability</topic><topic>Waterborne acrylic resin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Mingyang</creatorcontrib><creatorcontrib>Ge, Shengsong</creatorcontrib><creatorcontrib>Jiao, Cuiyan</creatorcontrib><creatorcontrib>Yan, Zhangyin</creatorcontrib><creatorcontrib>Jiang, Heyun</creatorcontrib><creatorcontrib>Zhu, Yunfeng</creatorcontrib><creatorcontrib>Dong, Binbin</creatorcontrib><creatorcontrib>Dong, Mengyao</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Mingyang</au><au>Ge, Shengsong</au><au>Jiao, Cuiyan</au><au>Yan, Zhangyin</au><au>Jiang, Heyun</au><au>Zhu, Yunfeng</au><au>Dong, Binbin</au><au>Dong, Mengyao</au><au>Guo, Zhanhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes</atitle><jtitle>Polymer (Guilford)</jtitle><date>2020-06-18</date><risdate>2020</risdate><volume>200</volume><spage>122547</spage><pages>122547-</pages><artnum>122547</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Multi-walled carbon nanotubes (MWCNTs)/waterborne acrylic resin nanocomposite coatings were synthesized by a solution mixing method using 3-aminopropyltriethoxysilane (KH-550) coupling agent as the curing agent. The improvements on thermostability, conductibility, mechanical performances, and hydrophobicity of the as-prepared composite coatings were evaluated. The conductivity was improved by six orders of magnitude compared to pure waterborne acrylic resin. CNTs greatly enhanced the thermostability and reduced the curing temperature. The tensile test showed that the introduction of CNTs significantly enhanced the mechanical performances of the resin. The sample with 5 wt% CNTs exhibited the largest tensile strength, which was higher than pure resin. Moreover, the coating had an improved surface hydrophobicity. 6 wt% CNTs increased the contact angle of the coating from 81.32° to about 90°.
[Display omitted]
•Carboxylated CNTs/waterborne acrylic resin modified with gycidyl methacrylate (GMA) was firstly prepared.•3-aminopropyltriethoxysilane (KH-550) was used not only as a coupling agent but also as a curing agent.•The added CNTs significantly improved the electrical conductivity.•The added CNTs significantly enhanced thermal stability and tensile strength of coating.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2020.122547</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2020-06, Vol.200, p.122547, Article 122547 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_2432558498 |
source | Elsevier ScienceDirect Journals |
subjects | 3-aminopropyltriethoxysilane Acrylic resins Aminopropyltriethoxysilane Coatings Contact angle Coupling agents Curing Curing agents Electric contacts Electrical resistivity Hydrophobicity Multi wall carbon nanotubes Multi-walled carbon nanotube Nanocomposites Nanocomposites coating Nanotechnology Nanotubes Properties Tensile strength Tensile tests Thermal stability Waterborne acrylic resin |
title | Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20electrical,%20mechanical,%20thermal%20and%20hydrophobic%20properties%20of%20waterborne%20acrylic%20resin-glycidyl%20methacrylate%20(GMA)%20by%20adding%20multi-walled%20carbon%20nanotubes&rft.jtitle=Polymer%20(Guilford)&rft.au=Wu,%20Mingyang&rft.date=2020-06-18&rft.volume=200&rft.spage=122547&rft.pages=122547-&rft.artnum=122547&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2020.122547&rft_dat=%3Cproquest_cross%3E2432558498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432558498&rft_id=info:pmid/&rft_els_id=S0032386120303797&rfr_iscdi=true |