Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes

Multi-walled carbon nanotubes (MWCNTs)/waterborne acrylic resin nanocomposite coatings were synthesized by a solution mixing method using 3-aminopropyltriethoxysilane (KH-550) coupling agent as the curing agent. The improvements on thermostability, conductibility, mechanical performances, and hydrop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2020-06, Vol.200, p.122547, Article 122547
Hauptverfasser: Wu, Mingyang, Ge, Shengsong, Jiao, Cuiyan, Yan, Zhangyin, Jiang, Heyun, Zhu, Yunfeng, Dong, Binbin, Dong, Mengyao, Guo, Zhanhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122547
container_title Polymer (Guilford)
container_volume 200
creator Wu, Mingyang
Ge, Shengsong
Jiao, Cuiyan
Yan, Zhangyin
Jiang, Heyun
Zhu, Yunfeng
Dong, Binbin
Dong, Mengyao
Guo, Zhanhu
description Multi-walled carbon nanotubes (MWCNTs)/waterborne acrylic resin nanocomposite coatings were synthesized by a solution mixing method using 3-aminopropyltriethoxysilane (KH-550) coupling agent as the curing agent. The improvements on thermostability, conductibility, mechanical performances, and hydrophobicity of the as-prepared composite coatings were evaluated. The conductivity was improved by six orders of magnitude compared to pure waterborne acrylic resin. CNTs greatly enhanced the thermostability and reduced the curing temperature. The tensile test showed that the introduction of CNTs significantly enhanced the mechanical performances of the resin. The sample with 5 wt% CNTs exhibited the largest tensile strength, which was higher than pure resin. Moreover, the coating had an improved surface hydrophobicity. 6 wt% CNTs increased the contact angle of the coating from 81.32° to about 90°. [Display omitted] •Carboxylated CNTs/waterborne acrylic resin modified with gycidyl methacrylate (GMA) was firstly prepared.•3-aminopropyltriethoxysilane (KH-550) was used not only as a coupling agent but also as a curing agent.•The added CNTs significantly improved the electrical conductivity.•The added CNTs significantly enhanced thermal stability and tensile strength of coating.
doi_str_mv 10.1016/j.polymer.2020.122547
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2432558498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386120303797</els_id><sourcerecordid>2432558498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-903e3b9222eb7e9ff917e0f26d4c824c30fae6ed4a077b2bb9620ddb3cb0ec1f3</originalsourceid><addsrcrecordid>eNqFUclqHDEQFSGBTOx8QkCQSwLpsZZeT8GYxDY4-OKchZZqtwa11JE0Nv0_-dBo3L7nVEXVW6h6CH2iZE8JbS8O-yW4dYa4Z4SVGWNN3b1BO9p3vGJsoG_RjhDOKt639D36kNKBEMIaVu_Q39t5ieHJ-kcMDnSOVkv3Dc-gJ-m3Pk8QZ-mw9AZPq4lhmYKyGhfeAjFbSDiM-FlmiCpED1jquLoCiJCsrx7dqq1ZXdHM08uqIPGX61-XX7FasTTmZD4fXbbVs3QODNayKHnspQ_5qCCdo3ejdAk-vtYz9Pvnj4erm-ru_vr26vKu0px3uRoIB64GxhioDoZxHGgHZGStqXXPas3JKKEFU0vSdYopNbSMGKO4VgQ0HfkZ-rzpltP-HCFlcQjH6IulYDVnTdPXQ19QzYbSMaQUYRRLtLOMq6BEnAIRB_EaiDgFIrZACu_7xoNywpMt26QteA3GxvJ5YYL9j8I_dlGbqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432558498</pqid></control><display><type>article</type><title>Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes</title><source>Elsevier ScienceDirect Journals</source><creator>Wu, Mingyang ; Ge, Shengsong ; Jiao, Cuiyan ; Yan, Zhangyin ; Jiang, Heyun ; Zhu, Yunfeng ; Dong, Binbin ; Dong, Mengyao ; Guo, Zhanhu</creator><creatorcontrib>Wu, Mingyang ; Ge, Shengsong ; Jiao, Cuiyan ; Yan, Zhangyin ; Jiang, Heyun ; Zhu, Yunfeng ; Dong, Binbin ; Dong, Mengyao ; Guo, Zhanhu</creatorcontrib><description>Multi-walled carbon nanotubes (MWCNTs)/waterborne acrylic resin nanocomposite coatings were synthesized by a solution mixing method using 3-aminopropyltriethoxysilane (KH-550) coupling agent as the curing agent. The improvements on thermostability, conductibility, mechanical performances, and hydrophobicity of the as-prepared composite coatings were evaluated. The conductivity was improved by six orders of magnitude compared to pure waterborne acrylic resin. CNTs greatly enhanced the thermostability and reduced the curing temperature. The tensile test showed that the introduction of CNTs significantly enhanced the mechanical performances of the resin. The sample with 5 wt% CNTs exhibited the largest tensile strength, which was higher than pure resin. Moreover, the coating had an improved surface hydrophobicity. 6 wt% CNTs increased the contact angle of the coating from 81.32° to about 90°. [Display omitted] •Carboxylated CNTs/waterborne acrylic resin modified with gycidyl methacrylate (GMA) was firstly prepared.•3-aminopropyltriethoxysilane (KH-550) was used not only as a coupling agent but also as a curing agent.•The added CNTs significantly improved the electrical conductivity.•The added CNTs significantly enhanced thermal stability and tensile strength of coating.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2020.122547</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>3-aminopropyltriethoxysilane ; Acrylic resins ; Aminopropyltriethoxysilane ; Coatings ; Contact angle ; Coupling agents ; Curing ; Curing agents ; Electric contacts ; Electrical resistivity ; Hydrophobicity ; Multi wall carbon nanotubes ; Multi-walled carbon nanotube ; Nanocomposites ; Nanocomposites coating ; Nanotechnology ; Nanotubes ; Properties ; Tensile strength ; Tensile tests ; Thermal stability ; Waterborne acrylic resin</subject><ispartof>Polymer (Guilford), 2020-06, Vol.200, p.122547, Article 122547</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 18, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-903e3b9222eb7e9ff917e0f26d4c824c30fae6ed4a077b2bb9620ddb3cb0ec1f3</citedby><cites>FETCH-LOGICAL-c337t-903e3b9222eb7e9ff917e0f26d4c824c30fae6ed4a077b2bb9620ddb3cb0ec1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2020.122547$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Wu, Mingyang</creatorcontrib><creatorcontrib>Ge, Shengsong</creatorcontrib><creatorcontrib>Jiao, Cuiyan</creatorcontrib><creatorcontrib>Yan, Zhangyin</creatorcontrib><creatorcontrib>Jiang, Heyun</creatorcontrib><creatorcontrib>Zhu, Yunfeng</creatorcontrib><creatorcontrib>Dong, Binbin</creatorcontrib><creatorcontrib>Dong, Mengyao</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><title>Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes</title><title>Polymer (Guilford)</title><description>Multi-walled carbon nanotubes (MWCNTs)/waterborne acrylic resin nanocomposite coatings were synthesized by a solution mixing method using 3-aminopropyltriethoxysilane (KH-550) coupling agent as the curing agent. The improvements on thermostability, conductibility, mechanical performances, and hydrophobicity of the as-prepared composite coatings were evaluated. The conductivity was improved by six orders of magnitude compared to pure waterborne acrylic resin. CNTs greatly enhanced the thermostability and reduced the curing temperature. The tensile test showed that the introduction of CNTs significantly enhanced the mechanical performances of the resin. The sample with 5 wt% CNTs exhibited the largest tensile strength, which was higher than pure resin. Moreover, the coating had an improved surface hydrophobicity. 6 wt% CNTs increased the contact angle of the coating from 81.32° to about 90°. [Display omitted] •Carboxylated CNTs/waterborne acrylic resin modified with gycidyl methacrylate (GMA) was firstly prepared.•3-aminopropyltriethoxysilane (KH-550) was used not only as a coupling agent but also as a curing agent.•The added CNTs significantly improved the electrical conductivity.•The added CNTs significantly enhanced thermal stability and tensile strength of coating.</description><subject>3-aminopropyltriethoxysilane</subject><subject>Acrylic resins</subject><subject>Aminopropyltriethoxysilane</subject><subject>Coatings</subject><subject>Contact angle</subject><subject>Coupling agents</subject><subject>Curing</subject><subject>Curing agents</subject><subject>Electric contacts</subject><subject>Electrical resistivity</subject><subject>Hydrophobicity</subject><subject>Multi wall carbon nanotubes</subject><subject>Multi-walled carbon nanotube</subject><subject>Nanocomposites</subject><subject>Nanocomposites coating</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Properties</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Thermal stability</subject><subject>Waterborne acrylic resin</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUclqHDEQFSGBTOx8QkCQSwLpsZZeT8GYxDY4-OKchZZqtwa11JE0Nv0_-dBo3L7nVEXVW6h6CH2iZE8JbS8O-yW4dYa4Z4SVGWNN3b1BO9p3vGJsoG_RjhDOKt639D36kNKBEMIaVu_Q39t5ieHJ-kcMDnSOVkv3Dc-gJ-m3Pk8QZ-mw9AZPq4lhmYKyGhfeAjFbSDiM-FlmiCpED1jquLoCiJCsrx7dqq1ZXdHM08uqIPGX61-XX7FasTTmZD4fXbbVs3QODNayKHnspQ_5qCCdo3ejdAk-vtYz9Pvnj4erm-ru_vr26vKu0px3uRoIB64GxhioDoZxHGgHZGStqXXPas3JKKEFU0vSdYopNbSMGKO4VgQ0HfkZ-rzpltP-HCFlcQjH6IulYDVnTdPXQ19QzYbSMaQUYRRLtLOMq6BEnAIRB_EaiDgFIrZACu_7xoNywpMt26QteA3GxvJ5YYL9j8I_dlGbqg</recordid><startdate>20200618</startdate><enddate>20200618</enddate><creator>Wu, Mingyang</creator><creator>Ge, Shengsong</creator><creator>Jiao, Cuiyan</creator><creator>Yan, Zhangyin</creator><creator>Jiang, Heyun</creator><creator>Zhu, Yunfeng</creator><creator>Dong, Binbin</creator><creator>Dong, Mengyao</creator><creator>Guo, Zhanhu</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20200618</creationdate><title>Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes</title><author>Wu, Mingyang ; Ge, Shengsong ; Jiao, Cuiyan ; Yan, Zhangyin ; Jiang, Heyun ; Zhu, Yunfeng ; Dong, Binbin ; Dong, Mengyao ; Guo, Zhanhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-903e3b9222eb7e9ff917e0f26d4c824c30fae6ed4a077b2bb9620ddb3cb0ec1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-aminopropyltriethoxysilane</topic><topic>Acrylic resins</topic><topic>Aminopropyltriethoxysilane</topic><topic>Coatings</topic><topic>Contact angle</topic><topic>Coupling agents</topic><topic>Curing</topic><topic>Curing agents</topic><topic>Electric contacts</topic><topic>Electrical resistivity</topic><topic>Hydrophobicity</topic><topic>Multi wall carbon nanotubes</topic><topic>Multi-walled carbon nanotube</topic><topic>Nanocomposites</topic><topic>Nanocomposites coating</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Properties</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Thermal stability</topic><topic>Waterborne acrylic resin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Mingyang</creatorcontrib><creatorcontrib>Ge, Shengsong</creatorcontrib><creatorcontrib>Jiao, Cuiyan</creatorcontrib><creatorcontrib>Yan, Zhangyin</creatorcontrib><creatorcontrib>Jiang, Heyun</creatorcontrib><creatorcontrib>Zhu, Yunfeng</creatorcontrib><creatorcontrib>Dong, Binbin</creatorcontrib><creatorcontrib>Dong, Mengyao</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Mingyang</au><au>Ge, Shengsong</au><au>Jiao, Cuiyan</au><au>Yan, Zhangyin</au><au>Jiang, Heyun</au><au>Zhu, Yunfeng</au><au>Dong, Binbin</au><au>Dong, Mengyao</au><au>Guo, Zhanhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes</atitle><jtitle>Polymer (Guilford)</jtitle><date>2020-06-18</date><risdate>2020</risdate><volume>200</volume><spage>122547</spage><pages>122547-</pages><artnum>122547</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Multi-walled carbon nanotubes (MWCNTs)/waterborne acrylic resin nanocomposite coatings were synthesized by a solution mixing method using 3-aminopropyltriethoxysilane (KH-550) coupling agent as the curing agent. The improvements on thermostability, conductibility, mechanical performances, and hydrophobicity of the as-prepared composite coatings were evaluated. The conductivity was improved by six orders of magnitude compared to pure waterborne acrylic resin. CNTs greatly enhanced the thermostability and reduced the curing temperature. The tensile test showed that the introduction of CNTs significantly enhanced the mechanical performances of the resin. The sample with 5 wt% CNTs exhibited the largest tensile strength, which was higher than pure resin. Moreover, the coating had an improved surface hydrophobicity. 6 wt% CNTs increased the contact angle of the coating from 81.32° to about 90°. [Display omitted] •Carboxylated CNTs/waterborne acrylic resin modified with gycidyl methacrylate (GMA) was firstly prepared.•3-aminopropyltriethoxysilane (KH-550) was used not only as a coupling agent but also as a curing agent.•The added CNTs significantly improved the electrical conductivity.•The added CNTs significantly enhanced thermal stability and tensile strength of coating.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2020.122547</doi></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2020-06, Vol.200, p.122547, Article 122547
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_journals_2432558498
source Elsevier ScienceDirect Journals
subjects 3-aminopropyltriethoxysilane
Acrylic resins
Aminopropyltriethoxysilane
Coatings
Contact angle
Coupling agents
Curing
Curing agents
Electric contacts
Electrical resistivity
Hydrophobicity
Multi wall carbon nanotubes
Multi-walled carbon nanotube
Nanocomposites
Nanocomposites coating
Nanotechnology
Nanotubes
Properties
Tensile strength
Tensile tests
Thermal stability
Waterborne acrylic resin
title Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20electrical,%20mechanical,%20thermal%20and%20hydrophobic%20properties%20of%20waterborne%20acrylic%20resin-glycidyl%20methacrylate%20(GMA)%20by%20adding%20multi-walled%20carbon%20nanotubes&rft.jtitle=Polymer%20(Guilford)&rft.au=Wu,%20Mingyang&rft.date=2020-06-18&rft.volume=200&rft.spage=122547&rft.pages=122547-&rft.artnum=122547&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2020.122547&rft_dat=%3Cproquest_cross%3E2432558498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432558498&rft_id=info:pmid/&rft_els_id=S0032386120303797&rfr_iscdi=true