Drying kinetic measurements of polymer nanolayers – Experimental results with a model-based validation and interpretation of solvent diffusion
This contribution presents a method to examine the drying process of thin films of polymer gravimetrically, ranging from a few micrometers to below 20nm using a quartz crystal microbalance (QCM). Polyvinyl acetate (PVAc) and toluene (tol) serve as the model system to validate the method by drying ex...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2020-06, Vol.200, p.122595, Article 122595 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 122595 |
container_title | Polymer (Guilford) |
container_volume | 200 |
creator | Börnhorst, Tobias Frankenhauser, Lisa Scharfer, Philip Schabel, Wilhelm |
description | This contribution presents a method to examine the drying process of thin films of polymer gravimetrically, ranging from a few micrometers to below 20nm using a quartz crystal microbalance (QCM). Polyvinyl acetate (PVAc) and toluene (tol) serve as the model system to validate the method by drying experiments, simulations and the determination of the concentration dependent solvent diffusion coefficient. The results show that even on the nanometer scale, the diffusion coefficient is not a function of film thickness, which is contrary to the observations that can be found in literature. A thin polymer film, still loaded with residual solvent, is placed into a flow channel with controlled drying conditions. The QCM gravimetrically measures the drying curve and precisely detects changes of mass fractions on the scale of a hundredth of a percent over the course of hours, which translates to changes in layer thickness as small as to 0.1nm per hour. The presented method is a general-purpose tool for measuring concentration-dependent diffusion coefficients, which is relevant to all sorts of thicknesses and coatings. Since nanolayers are employed, in a reasonable amount of time diffusion coefficients in the order of 10−18m2s−1 are accessible.
[Display omitted]
•Experimental drying curves of polymer nanolayers by quartz crystal microbalance.•Concentration dependent diffusion coefficient measurement of solvent in polymer.•Numerical simulation of polymer nanolayer drying.•Diffusion of toluene in polyvinyl acetate transferable from nanolayer to bulk.•Skin formation due to strong concentration dependency of diffusion coefficient. |
doi_str_mv | 10.1016/j.polymer.2020.122595 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2432558397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386120304262</els_id><sourcerecordid>2432558397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-467aaae39d63227e39c281b968b8337ad7f952df466fe000ab95e62ae6a5fe6d3</originalsourceid><addsrcrecordid>eNqFkMFq3DAURUVJoJOkn1AQZO2pLI1kexVKmraBQDbJWryxnlJNPZIrydPMLp9QyB_2S6LBs8_qPa7Ou-JeQj7XbFmzWn3ZLMcw7LcYl5zxonEuO_mBLOq2ERXnXX1CFowJXolW1R_JWUobxhiXfLUg_77FvfNP9LfzmF1PtwhpirhFnxMNlh6dqQcfBthjTPT_yyu9eR4xugMFA42YpqHgf13-RYFug8GhWkNCQ3cwOAPZBU_BG-p8xjhGzLNU_FMYdsWFGmftlIp4QU4tDAk_Hec5efx-83D9s7q7_3F7_fWu6oVocrVSDQCg6IwSnDdl6XlbrzvVrtsCgGlsJ7mxK6UslrSw7iQqDqhAWlRGnJPL2XeM4c-EKetNmKIvX2q-ElzKVnRNoeRM9TGkFNHqscSGuNc104fy9UYfK9KH8vVcfrm7mu-wRNi58pp6h75H4yL2WZvg3nF4A_59lXM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432558397</pqid></control><display><type>article</type><title>Drying kinetic measurements of polymer nanolayers – Experimental results with a model-based validation and interpretation of solvent diffusion</title><source>Elsevier ScienceDirect Journals</source><creator>Börnhorst, Tobias ; Frankenhauser, Lisa ; Scharfer, Philip ; Schabel, Wilhelm</creator><creatorcontrib>Börnhorst, Tobias ; Frankenhauser, Lisa ; Scharfer, Philip ; Schabel, Wilhelm</creatorcontrib><description>This contribution presents a method to examine the drying process of thin films of polymer gravimetrically, ranging from a few micrometers to below 20nm using a quartz crystal microbalance (QCM). Polyvinyl acetate (PVAc) and toluene (tol) serve as the model system to validate the method by drying experiments, simulations and the determination of the concentration dependent solvent diffusion coefficient. The results show that even on the nanometer scale, the diffusion coefficient is not a function of film thickness, which is contrary to the observations that can be found in literature. A thin polymer film, still loaded with residual solvent, is placed into a flow channel with controlled drying conditions. The QCM gravimetrically measures the drying curve and precisely detects changes of mass fractions on the scale of a hundredth of a percent over the course of hours, which translates to changes in layer thickness as small as to 0.1nm per hour. The presented method is a general-purpose tool for measuring concentration-dependent diffusion coefficients, which is relevant to all sorts of thicknesses and coatings. Since nanolayers are employed, in a reasonable amount of time diffusion coefficients in the order of 10−18m2s−1 are accessible.
[Display omitted]
•Experimental drying curves of polymer nanolayers by quartz crystal microbalance.•Concentration dependent diffusion coefficient measurement of solvent in polymer.•Numerical simulation of polymer nanolayer drying.•Diffusion of toluene in polyvinyl acetate transferable from nanolayer to bulk.•Skin formation due to strong concentration dependency of diffusion coefficient.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2020.122595</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acetic acid ; Change detection ; Computer simulation ; Diffusion ; Diffusion coatings ; Diffusion coefficient ; Diffusion coefficients ; Drying ; Drying curves ; Film thickness ; Gravimetry ; Mathematical models ; Microbalances ; Micrometers ; Polymer films ; Polymer nanolayers ; Polymers ; Polyvinyl acetates ; Quartz crystal microbalance ; Quartz crystals ; Solvent residue ; Solvents ; Thin films ; Toluene</subject><ispartof>Polymer (Guilford), 2020-06, Vol.200, p.122595, Article 122595</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 18, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-467aaae39d63227e39c281b968b8337ad7f952df466fe000ab95e62ae6a5fe6d3</citedby><cites>FETCH-LOGICAL-c337t-467aaae39d63227e39c281b968b8337ad7f952df466fe000ab95e62ae6a5fe6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0032386120304262$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Börnhorst, Tobias</creatorcontrib><creatorcontrib>Frankenhauser, Lisa</creatorcontrib><creatorcontrib>Scharfer, Philip</creatorcontrib><creatorcontrib>Schabel, Wilhelm</creatorcontrib><title>Drying kinetic measurements of polymer nanolayers – Experimental results with a model-based validation and interpretation of solvent diffusion</title><title>Polymer (Guilford)</title><description>This contribution presents a method to examine the drying process of thin films of polymer gravimetrically, ranging from a few micrometers to below 20nm using a quartz crystal microbalance (QCM). Polyvinyl acetate (PVAc) and toluene (tol) serve as the model system to validate the method by drying experiments, simulations and the determination of the concentration dependent solvent diffusion coefficient. The results show that even on the nanometer scale, the diffusion coefficient is not a function of film thickness, which is contrary to the observations that can be found in literature. A thin polymer film, still loaded with residual solvent, is placed into a flow channel with controlled drying conditions. The QCM gravimetrically measures the drying curve and precisely detects changes of mass fractions on the scale of a hundredth of a percent over the course of hours, which translates to changes in layer thickness as small as to 0.1nm per hour. The presented method is a general-purpose tool for measuring concentration-dependent diffusion coefficients, which is relevant to all sorts of thicknesses and coatings. Since nanolayers are employed, in a reasonable amount of time diffusion coefficients in the order of 10−18m2s−1 are accessible.
[Display omitted]
•Experimental drying curves of polymer nanolayers by quartz crystal microbalance.•Concentration dependent diffusion coefficient measurement of solvent in polymer.•Numerical simulation of polymer nanolayer drying.•Diffusion of toluene in polyvinyl acetate transferable from nanolayer to bulk.•Skin formation due to strong concentration dependency of diffusion coefficient.</description><subject>Acetic acid</subject><subject>Change detection</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Diffusion coatings</subject><subject>Diffusion coefficient</subject><subject>Diffusion coefficients</subject><subject>Drying</subject><subject>Drying curves</subject><subject>Film thickness</subject><subject>Gravimetry</subject><subject>Mathematical models</subject><subject>Microbalances</subject><subject>Micrometers</subject><subject>Polymer films</subject><subject>Polymer nanolayers</subject><subject>Polymers</subject><subject>Polyvinyl acetates</subject><subject>Quartz crystal microbalance</subject><subject>Quartz crystals</subject><subject>Solvent residue</subject><subject>Solvents</subject><subject>Thin films</subject><subject>Toluene</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFq3DAURUVJoJOkn1AQZO2pLI1kexVKmraBQDbJWryxnlJNPZIrydPMLp9QyB_2S6LBs8_qPa7Ou-JeQj7XbFmzWn3ZLMcw7LcYl5zxonEuO_mBLOq2ERXnXX1CFowJXolW1R_JWUobxhiXfLUg_77FvfNP9LfzmF1PtwhpirhFnxMNlh6dqQcfBthjTPT_yyu9eR4xugMFA42YpqHgf13-RYFug8GhWkNCQ3cwOAPZBU_BG-p8xjhGzLNU_FMYdsWFGmftlIp4QU4tDAk_Hec5efx-83D9s7q7_3F7_fWu6oVocrVSDQCg6IwSnDdl6XlbrzvVrtsCgGlsJ7mxK6UslrSw7iQqDqhAWlRGnJPL2XeM4c-EKetNmKIvX2q-ElzKVnRNoeRM9TGkFNHqscSGuNc104fy9UYfK9KH8vVcfrm7mu-wRNi58pp6h75H4yL2WZvg3nF4A_59lXM</recordid><startdate>20200618</startdate><enddate>20200618</enddate><creator>Börnhorst, Tobias</creator><creator>Frankenhauser, Lisa</creator><creator>Scharfer, Philip</creator><creator>Schabel, Wilhelm</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20200618</creationdate><title>Drying kinetic measurements of polymer nanolayers – Experimental results with a model-based validation and interpretation of solvent diffusion</title><author>Börnhorst, Tobias ; Frankenhauser, Lisa ; Scharfer, Philip ; Schabel, Wilhelm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-467aaae39d63227e39c281b968b8337ad7f952df466fe000ab95e62ae6a5fe6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetic acid</topic><topic>Change detection</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Diffusion coatings</topic><topic>Diffusion coefficient</topic><topic>Diffusion coefficients</topic><topic>Drying</topic><topic>Drying curves</topic><topic>Film thickness</topic><topic>Gravimetry</topic><topic>Mathematical models</topic><topic>Microbalances</topic><topic>Micrometers</topic><topic>Polymer films</topic><topic>Polymer nanolayers</topic><topic>Polymers</topic><topic>Polyvinyl acetates</topic><topic>Quartz crystal microbalance</topic><topic>Quartz crystals</topic><topic>Solvent residue</topic><topic>Solvents</topic><topic>Thin films</topic><topic>Toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Börnhorst, Tobias</creatorcontrib><creatorcontrib>Frankenhauser, Lisa</creatorcontrib><creatorcontrib>Scharfer, Philip</creatorcontrib><creatorcontrib>Schabel, Wilhelm</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Börnhorst, Tobias</au><au>Frankenhauser, Lisa</au><au>Scharfer, Philip</au><au>Schabel, Wilhelm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drying kinetic measurements of polymer nanolayers – Experimental results with a model-based validation and interpretation of solvent diffusion</atitle><jtitle>Polymer (Guilford)</jtitle><date>2020-06-18</date><risdate>2020</risdate><volume>200</volume><spage>122595</spage><pages>122595-</pages><artnum>122595</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>This contribution presents a method to examine the drying process of thin films of polymer gravimetrically, ranging from a few micrometers to below 20nm using a quartz crystal microbalance (QCM). Polyvinyl acetate (PVAc) and toluene (tol) serve as the model system to validate the method by drying experiments, simulations and the determination of the concentration dependent solvent diffusion coefficient. The results show that even on the nanometer scale, the diffusion coefficient is not a function of film thickness, which is contrary to the observations that can be found in literature. A thin polymer film, still loaded with residual solvent, is placed into a flow channel with controlled drying conditions. The QCM gravimetrically measures the drying curve and precisely detects changes of mass fractions on the scale of a hundredth of a percent over the course of hours, which translates to changes in layer thickness as small as to 0.1nm per hour. The presented method is a general-purpose tool for measuring concentration-dependent diffusion coefficients, which is relevant to all sorts of thicknesses and coatings. Since nanolayers are employed, in a reasonable amount of time diffusion coefficients in the order of 10−18m2s−1 are accessible.
[Display omitted]
•Experimental drying curves of polymer nanolayers by quartz crystal microbalance.•Concentration dependent diffusion coefficient measurement of solvent in polymer.•Numerical simulation of polymer nanolayer drying.•Diffusion of toluene in polyvinyl acetate transferable from nanolayer to bulk.•Skin formation due to strong concentration dependency of diffusion coefficient.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2020.122595</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2020-06, Vol.200, p.122595, Article 122595 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_2432558397 |
source | Elsevier ScienceDirect Journals |
subjects | Acetic acid Change detection Computer simulation Diffusion Diffusion coatings Diffusion coefficient Diffusion coefficients Drying Drying curves Film thickness Gravimetry Mathematical models Microbalances Micrometers Polymer films Polymer nanolayers Polymers Polyvinyl acetates Quartz crystal microbalance Quartz crystals Solvent residue Solvents Thin films Toluene |
title | Drying kinetic measurements of polymer nanolayers – Experimental results with a model-based validation and interpretation of solvent diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drying%20kinetic%20measurements%20of%20polymer%20nanolayers%20%E2%80%93%20Experimental%20results%20with%20a%20model-based%20validation%20and%20interpretation%20of%20solvent%20diffusion&rft.jtitle=Polymer%20(Guilford)&rft.au=B%C3%B6rnhorst,%20Tobias&rft.date=2020-06-18&rft.volume=200&rft.spage=122595&rft.pages=122595-&rft.artnum=122595&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2020.122595&rft_dat=%3Cproquest_cross%3E2432558397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432558397&rft_id=info:pmid/&rft_els_id=S0032386120304262&rfr_iscdi=true |