Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis

The rapid surface oxidation of phosphorene under ambient conditions is considered to be a serious issue for many applications, but is used here as a strategy to achieve efficient heteroatom doping. Highly crystalline nitrogen-doped phosphorene (N-phosphorene) is prepared using a combination of ball...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-08, Vol.8 (31), p.15875-15883
Hauptverfasser: Xu, Guangrui, Li, Hao, Bati, Abdulaziz S. R, Bat-Erdene, Munkhjargal, Nine, Md J, Losic, Dusan, Chen, Yu, Shapter, Joseph G, Batmunkh, Munkhbayar, Ma, Tianyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15883
container_issue 31
container_start_page 15875
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Xu, Guangrui
Li, Hao
Bati, Abdulaziz S. R
Bat-Erdene, Munkhjargal
Nine, Md J
Losic, Dusan
Chen, Yu
Shapter, Joseph G
Batmunkh, Munkhbayar
Ma, Tianyi
description The rapid surface oxidation of phosphorene under ambient conditions is considered to be a serious issue for many applications, but is used here as a strategy to achieve efficient heteroatom doping. Highly crystalline nitrogen-doped phosphorene (N-phosphorene) is prepared using a combination of ball milling and microwave techniques. The prepared N-doped phosphorene nanosheets showed outstanding electrocatalytic performance as a new type of non-metallic catalyst for nitrogen (N 2 ) to ammonia (NH 3 ) conversion, with an NH 3 yield rate and faradaic efficiency (FE) of up to 18.79 μg h −1 mg CAT −1 and 21.51%, respectively, at a low overpotential (0 V) versus the reversible hydrogen electrode (RHE). Density functional theory calculations revealed that the high nitrogen reduction reaction (NRR) FEs originate from the increased hydrophobicity at the N and O doped phosphorene surfaces, which in turn hinders the competing hydrogen evolution reaction (HER) in an alkaline environment and promotes the NRR. This work not only introduces an efficient strategy to chemically functionalize 2D phosphorene, but also opens a new avenue in using N-doped phosphorene nanosheets as a metal-free catalyst. A facile and efficient strategy to produce nitrogen-doped (N-doped) phosphorene nanosheets that can be used as an efficient metal-free catalyst for electrochemical ammonia synthesis under ambient conditions is presented.
doi_str_mv 10.1039/d0ta03237a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2432505120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432505120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-4d5b753c15cb4fcf43f9a7c2c69e869ff6b1c719dd13d980f0877398b8dd78453</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCpbai3dhxZuwOtlsNslxqZ9Q9FLPIZsPu6XdrEl66L83WtGbA8PM4WEGXoTOMdxgIOLWQFJAKsLUEZpUQKFktWiOf3fOT9EsxjXk4gCNEBPUvvQp-Hc7lMaP1hTjysfcwQ62cD4UdmN1BloltdmnXhdqu_VDr4q4H9LKxj6eoROnNtHOfuYUvT3cL-dP5eL18XneLkpNOKSyNrRjlGhMdVc77WrihGK60o2wvBHONR3WDAtjMDGCgwPOGBG848YwXlMyRVeHu2PwHzsbk1z7XRjyS1nVpKJAcQVZXR-UDj7GYJ0cQ79VYS8xyK-U5B0s2--U2owvDzhE_ev-UpSjcdlc_GfIJ6bFb1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432505120</pqid></control><display><type>article</type><title>Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Xu, Guangrui ; Li, Hao ; Bati, Abdulaziz S. R ; Bat-Erdene, Munkhjargal ; Nine, Md J ; Losic, Dusan ; Chen, Yu ; Shapter, Joseph G ; Batmunkh, Munkhbayar ; Ma, Tianyi</creator><creatorcontrib>Xu, Guangrui ; Li, Hao ; Bati, Abdulaziz S. R ; Bat-Erdene, Munkhjargal ; Nine, Md J ; Losic, Dusan ; Chen, Yu ; Shapter, Joseph G ; Batmunkh, Munkhbayar ; Ma, Tianyi</creatorcontrib><description>The rapid surface oxidation of phosphorene under ambient conditions is considered to be a serious issue for many applications, but is used here as a strategy to achieve efficient heteroatom doping. Highly crystalline nitrogen-doped phosphorene (N-phosphorene) is prepared using a combination of ball milling and microwave techniques. The prepared N-doped phosphorene nanosheets showed outstanding electrocatalytic performance as a new type of non-metallic catalyst for nitrogen (N 2 ) to ammonia (NH 3 ) conversion, with an NH 3 yield rate and faradaic efficiency (FE) of up to 18.79 μg h −1 mg CAT −1 and 21.51%, respectively, at a low overpotential (0 V) versus the reversible hydrogen electrode (RHE). Density functional theory calculations revealed that the high nitrogen reduction reaction (NRR) FEs originate from the increased hydrophobicity at the N and O doped phosphorene surfaces, which in turn hinders the competing hydrogen evolution reaction (HER) in an alkaline environment and promotes the NRR. This work not only introduces an efficient strategy to chemically functionalize 2D phosphorene, but also opens a new avenue in using N-doped phosphorene nanosheets as a metal-free catalyst. A facile and efficient strategy to produce nitrogen-doped (N-doped) phosphorene nanosheets that can be used as an efficient metal-free catalyst for electrochemical ammonia synthesis under ambient conditions is presented.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta03237a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonia ; Ball milling ; Catalysts ; Chemical reduction ; Density functional theory ; Hydrogen evolution reactions ; Hydrophobicity ; Nanostructure ; Nitrogen ; Oxidation ; Phosphorene</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-08, Vol.8 (31), p.15875-15883</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-4d5b753c15cb4fcf43f9a7c2c69e869ff6b1c719dd13d980f0877398b8dd78453</citedby><cites>FETCH-LOGICAL-c380t-4d5b753c15cb4fcf43f9a7c2c69e869ff6b1c719dd13d980f0877398b8dd78453</cites><orcidid>0000-0002-1042-8700 ; 0000-0001-6346-4396 ; 0000-0002-5740-8627 ; 0000-0002-1930-072X ; 0000-0001-9545-6761 ; 0000-0002-7493-4186 ; 0000-0002-4000-2751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Guangrui</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Bati, Abdulaziz S. R</creatorcontrib><creatorcontrib>Bat-Erdene, Munkhjargal</creatorcontrib><creatorcontrib>Nine, Md J</creatorcontrib><creatorcontrib>Losic, Dusan</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Shapter, Joseph G</creatorcontrib><creatorcontrib>Batmunkh, Munkhbayar</creatorcontrib><creatorcontrib>Ma, Tianyi</creatorcontrib><title>Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The rapid surface oxidation of phosphorene under ambient conditions is considered to be a serious issue for many applications, but is used here as a strategy to achieve efficient heteroatom doping. Highly crystalline nitrogen-doped phosphorene (N-phosphorene) is prepared using a combination of ball milling and microwave techniques. The prepared N-doped phosphorene nanosheets showed outstanding electrocatalytic performance as a new type of non-metallic catalyst for nitrogen (N 2 ) to ammonia (NH 3 ) conversion, with an NH 3 yield rate and faradaic efficiency (FE) of up to 18.79 μg h −1 mg CAT −1 and 21.51%, respectively, at a low overpotential (0 V) versus the reversible hydrogen electrode (RHE). Density functional theory calculations revealed that the high nitrogen reduction reaction (NRR) FEs originate from the increased hydrophobicity at the N and O doped phosphorene surfaces, which in turn hinders the competing hydrogen evolution reaction (HER) in an alkaline environment and promotes the NRR. This work not only introduces an efficient strategy to chemically functionalize 2D phosphorene, but also opens a new avenue in using N-doped phosphorene nanosheets as a metal-free catalyst. A facile and efficient strategy to produce nitrogen-doped (N-doped) phosphorene nanosheets that can be used as an efficient metal-free catalyst for electrochemical ammonia synthesis under ambient conditions is presented.</description><subject>Ammonia</subject><subject>Ball milling</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Density functional theory</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrophobicity</subject><subject>Nanostructure</subject><subject>Nitrogen</subject><subject>Oxidation</subject><subject>Phosphorene</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCpbai3dhxZuwOtlsNslxqZ9Q9FLPIZsPu6XdrEl66L83WtGbA8PM4WEGXoTOMdxgIOLWQFJAKsLUEZpUQKFktWiOf3fOT9EsxjXk4gCNEBPUvvQp-Hc7lMaP1hTjysfcwQ62cD4UdmN1BloltdmnXhdqu_VDr4q4H9LKxj6eoROnNtHOfuYUvT3cL-dP5eL18XneLkpNOKSyNrRjlGhMdVc77WrihGK60o2wvBHONR3WDAtjMDGCgwPOGBG848YwXlMyRVeHu2PwHzsbk1z7XRjyS1nVpKJAcQVZXR-UDj7GYJ0cQ79VYS8xyK-U5B0s2--U2owvDzhE_ev-UpSjcdlc_GfIJ6bFb1U</recordid><startdate>20200821</startdate><enddate>20200821</enddate><creator>Xu, Guangrui</creator><creator>Li, Hao</creator><creator>Bati, Abdulaziz S. R</creator><creator>Bat-Erdene, Munkhjargal</creator><creator>Nine, Md J</creator><creator>Losic, Dusan</creator><creator>Chen, Yu</creator><creator>Shapter, Joseph G</creator><creator>Batmunkh, Munkhbayar</creator><creator>Ma, Tianyi</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1042-8700</orcidid><orcidid>https://orcid.org/0000-0001-6346-4396</orcidid><orcidid>https://orcid.org/0000-0002-5740-8627</orcidid><orcidid>https://orcid.org/0000-0002-1930-072X</orcidid><orcidid>https://orcid.org/0000-0001-9545-6761</orcidid><orcidid>https://orcid.org/0000-0002-7493-4186</orcidid><orcidid>https://orcid.org/0000-0002-4000-2751</orcidid></search><sort><creationdate>20200821</creationdate><title>Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis</title><author>Xu, Guangrui ; Li, Hao ; Bati, Abdulaziz S. R ; Bat-Erdene, Munkhjargal ; Nine, Md J ; Losic, Dusan ; Chen, Yu ; Shapter, Joseph G ; Batmunkh, Munkhbayar ; Ma, Tianyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-4d5b753c15cb4fcf43f9a7c2c69e869ff6b1c719dd13d980f0877398b8dd78453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonia</topic><topic>Ball milling</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Density functional theory</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrophobicity</topic><topic>Nanostructure</topic><topic>Nitrogen</topic><topic>Oxidation</topic><topic>Phosphorene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Guangrui</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Bati, Abdulaziz S. R</creatorcontrib><creatorcontrib>Bat-Erdene, Munkhjargal</creatorcontrib><creatorcontrib>Nine, Md J</creatorcontrib><creatorcontrib>Losic, Dusan</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Shapter, Joseph G</creatorcontrib><creatorcontrib>Batmunkh, Munkhbayar</creatorcontrib><creatorcontrib>Ma, Tianyi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Guangrui</au><au>Li, Hao</au><au>Bati, Abdulaziz S. R</au><au>Bat-Erdene, Munkhjargal</au><au>Nine, Md J</au><au>Losic, Dusan</au><au>Chen, Yu</au><au>Shapter, Joseph G</au><au>Batmunkh, Munkhbayar</au><au>Ma, Tianyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-08-21</date><risdate>2020</risdate><volume>8</volume><issue>31</issue><spage>15875</spage><epage>15883</epage><pages>15875-15883</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The rapid surface oxidation of phosphorene under ambient conditions is considered to be a serious issue for many applications, but is used here as a strategy to achieve efficient heteroatom doping. Highly crystalline nitrogen-doped phosphorene (N-phosphorene) is prepared using a combination of ball milling and microwave techniques. The prepared N-doped phosphorene nanosheets showed outstanding electrocatalytic performance as a new type of non-metallic catalyst for nitrogen (N 2 ) to ammonia (NH 3 ) conversion, with an NH 3 yield rate and faradaic efficiency (FE) of up to 18.79 μg h −1 mg CAT −1 and 21.51%, respectively, at a low overpotential (0 V) versus the reversible hydrogen electrode (RHE). Density functional theory calculations revealed that the high nitrogen reduction reaction (NRR) FEs originate from the increased hydrophobicity at the N and O doped phosphorene surfaces, which in turn hinders the competing hydrogen evolution reaction (HER) in an alkaline environment and promotes the NRR. This work not only introduces an efficient strategy to chemically functionalize 2D phosphorene, but also opens a new avenue in using N-doped phosphorene nanosheets as a metal-free catalyst. A facile and efficient strategy to produce nitrogen-doped (N-doped) phosphorene nanosheets that can be used as an efficient metal-free catalyst for electrochemical ammonia synthesis under ambient conditions is presented.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta03237a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1042-8700</orcidid><orcidid>https://orcid.org/0000-0001-6346-4396</orcidid><orcidid>https://orcid.org/0000-0002-5740-8627</orcidid><orcidid>https://orcid.org/0000-0002-1930-072X</orcidid><orcidid>https://orcid.org/0000-0001-9545-6761</orcidid><orcidid>https://orcid.org/0000-0002-7493-4186</orcidid><orcidid>https://orcid.org/0000-0002-4000-2751</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-08, Vol.8 (31), p.15875-15883
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2432505120
source Royal Society Of Chemistry Journals 2008-
subjects Ammonia
Ball milling
Catalysts
Chemical reduction
Density functional theory
Hydrogen evolution reactions
Hydrophobicity
Nanostructure
Nitrogen
Oxidation
Phosphorene
title Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen-doped%20phosphorene%20for%20electrocatalytic%20ammonia%20synthesis&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Xu,%20Guangrui&rft.date=2020-08-21&rft.volume=8&rft.issue=31&rft.spage=15875&rft.epage=15883&rft.pages=15875-15883&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta03237a&rft_dat=%3Cproquest_cross%3E2432505120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432505120&rft_id=info:pmid/&rfr_iscdi=true