Three‐dimensional change in temperature sensitivity of northern vegetation phenology

Understanding how the temperature sensitivity of phenology changes with three spatial dimensions (altitude, latitude, and longitude) is critical for the prediction of future phenological synchronization. Here we investigate the spatial pattern of temperature sensitivity of spring and autumn phenolog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2020-09, Vol.26 (9), p.5189-5201
Hauptverfasser: Gao, Mengdi, Wang, Xuhui, Meng, Fandong, Liu, Qiang, Li, Xiangyi, Zhang, Yuan, Piao, Shilong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5201
container_issue 9
container_start_page 5189
container_title Global change biology
container_volume 26
creator Gao, Mengdi
Wang, Xuhui
Meng, Fandong
Liu, Qiang
Li, Xiangyi
Zhang, Yuan
Piao, Shilong
description Understanding how the temperature sensitivity of phenology changes with three spatial dimensions (altitude, latitude, and longitude) is critical for the prediction of future phenological synchronization. Here we investigate the spatial pattern of temperature sensitivity of spring and autumn phenology with altitude, latitude, and longitude during 1982–2016 across mid‐ and high‐latitude Northern Hemisphere (north of 30°N). We find distinct spatial patterns of temperature sensitivity of spring phenology (hereafter “spring ST”) among altitudinal, latitudinal, and longitudinal gradient. Spring ST decreased with altitude mostly over eastern Europe, whereas the opposite occurs in eastern North America and the north China plain. Spring ST decreased with latitude mainly in the boreal regions of North America, temperate Eurasia, and the arid/semi‐arid regions of Central Asia. This distribution may be related to the increased temperature variance, decreased precipitation, and radiation with latitude. Compared to spring ST, the spatial pattern of temperature sensitivity of autumn phenology (hereafter “autumn ST”) is more heterogeneous, only showing a clear spatial pattern of autumn ST along the latitudinal gradient. Our results highlight the three‐dimensional view to understand the phenological response to climate change and provide new metrics for evaluating phenological models. Accordingly, establishing a dense, high‐quality three‐dimensional observation system of phenology data is necessary for enhancing our ability to both predict phenological changes under changing climatic conditions and to facilitate sustainable management of ecosystems. This study explored spatial pattern of temperature sensitivity of land surface phenology in spring and autumn phenology (spring and autumn ST) based on three geographical dimensions of altitude, latitude, and longitude. Across mid‐ and high‐latitude Northern Hemisphere during 1982–2016, we found distinct spatial patterns of spring and autumn ST along altitudinal, latitudinal, and longitudinal gradients. Geographical gradient of temperature, temperature variance, precipitation, and radiation were possible drivers to the patterns of ST. Our results highlight the three‐dimensional view to understand phenological response to climate change, providing basis for improving phenological observation network and new metrics to evaluate phenology models.
doi_str_mv 10.1111/gcb.15200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2432408299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432408299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4190-5cc495963ab963f0f7417f747306b1ab693980eeb2eab76c745df89570e425733</originalsourceid><addsrcrecordid>eNp1kLtOw0AQRVcIREKg4AeQJSoKJ7MvP0qIICBFogm01toZPyK_2HWC3PEJfCNfwgYHOqaYGWnOXOleQi4pTKmtWZbEUyoZwBEZU-5Jl4nAO97vUrgUKB-RM2M2AMAZeKdkxJnwJQAbk9dVrhG_Pj7XRYW1KZpalU6SqzpDp6idDqsWteq2Gh2zv3fFruh6p0mdutFdjrp2dphhpzr76rQ51k3ZZP05OUlVafDiMCfk5eF-NX90l8-Lp_nt0k0EDcGVSSJCGXpcxbalkPqC-rb5HLyYqtgLeRgAYsxQxb6X-EKu0yCUPqBg0ud8Qq4H3VY3b1s0XbRpttp6MBET1iUELAwtdTNQiW6M0ZhGrS4qpfuIQrRPMLIJRj8JWvbqoLiNK1z_kb-RWWA2AO9Fif3_StFifjdIfgMV6Hsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432408299</pqid></control><display><type>article</type><title>Three‐dimensional change in temperature sensitivity of northern vegetation phenology</title><source>MEDLINE</source><source>Wiley Online Library (Online service)</source><creator>Gao, Mengdi ; Wang, Xuhui ; Meng, Fandong ; Liu, Qiang ; Li, Xiangyi ; Zhang, Yuan ; Piao, Shilong</creator><creatorcontrib>Gao, Mengdi ; Wang, Xuhui ; Meng, Fandong ; Liu, Qiang ; Li, Xiangyi ; Zhang, Yuan ; Piao, Shilong</creatorcontrib><description>Understanding how the temperature sensitivity of phenology changes with three spatial dimensions (altitude, latitude, and longitude) is critical for the prediction of future phenological synchronization. Here we investigate the spatial pattern of temperature sensitivity of spring and autumn phenology with altitude, latitude, and longitude during 1982–2016 across mid‐ and high‐latitude Northern Hemisphere (north of 30°N). We find distinct spatial patterns of temperature sensitivity of spring phenology (hereafter “spring ST”) among altitudinal, latitudinal, and longitudinal gradient. Spring ST decreased with altitude mostly over eastern Europe, whereas the opposite occurs in eastern North America and the north China plain. Spring ST decreased with latitude mainly in the boreal regions of North America, temperate Eurasia, and the arid/semi‐arid regions of Central Asia. This distribution may be related to the increased temperature variance, decreased precipitation, and radiation with latitude. Compared to spring ST, the spatial pattern of temperature sensitivity of autumn phenology (hereafter “autumn ST”) is more heterogeneous, only showing a clear spatial pattern of autumn ST along the latitudinal gradient. Our results highlight the three‐dimensional view to understand the phenological response to climate change and provide new metrics for evaluating phenological models. Accordingly, establishing a dense, high‐quality three‐dimensional observation system of phenology data is necessary for enhancing our ability to both predict phenological changes under changing climatic conditions and to facilitate sustainable management of ecosystems. This study explored spatial pattern of temperature sensitivity of land surface phenology in spring and autumn phenology (spring and autumn ST) based on three geographical dimensions of altitude, latitude, and longitude. Across mid‐ and high‐latitude Northern Hemisphere during 1982–2016, we found distinct spatial patterns of spring and autumn ST along altitudinal, latitudinal, and longitudinal gradients. Geographical gradient of temperature, temperature variance, precipitation, and radiation were possible drivers to the patterns of ST. Our results highlight the three‐dimensional view to understand phenological response to climate change, providing basis for improving phenological observation network and new metrics to evaluate phenology models.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.15200</identifier><identifier>PMID: 32475002</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Altitude ; Arid regions ; Arid zones ; Autumn ; autumn phenology ; China ; Climate Change ; Climate models ; Climatic conditions ; Dimensional changes ; Dimensions ; Ecosystem ; Ecosystem management ; Environmental changes ; Europe, Eastern ; Herbivores ; Latitude ; Latitudinal variations ; Longitude ; North America ; Northern Hemisphere ; Phenology ; Radiation ; Seasons ; Sensitivity ; Spring ; Spring (season) ; spring phenology ; Strategic management ; Synchronism ; Synchronization ; Temperature ; temperature sensitivity</subject><ispartof>Global change biology, 2020-09, Vol.26 (9), p.5189-5201</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4190-5cc495963ab963f0f7417f747306b1ab693980eeb2eab76c745df89570e425733</citedby><cites>FETCH-LOGICAL-c4190-5cc495963ab963f0f7417f747306b1ab693980eeb2eab76c745df89570e425733</cites><orcidid>0000-0003-2332-2873 ; 0000-0001-5462-0078 ; 0000-0001-8057-2292 ; 0000-0003-0818-9816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.15200$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.15200$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32475002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Mengdi</creatorcontrib><creatorcontrib>Wang, Xuhui</creatorcontrib><creatorcontrib>Meng, Fandong</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Li, Xiangyi</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Piao, Shilong</creatorcontrib><title>Three‐dimensional change in temperature sensitivity of northern vegetation phenology</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Understanding how the temperature sensitivity of phenology changes with three spatial dimensions (altitude, latitude, and longitude) is critical for the prediction of future phenological synchronization. Here we investigate the spatial pattern of temperature sensitivity of spring and autumn phenology with altitude, latitude, and longitude during 1982–2016 across mid‐ and high‐latitude Northern Hemisphere (north of 30°N). We find distinct spatial patterns of temperature sensitivity of spring phenology (hereafter “spring ST”) among altitudinal, latitudinal, and longitudinal gradient. Spring ST decreased with altitude mostly over eastern Europe, whereas the opposite occurs in eastern North America and the north China plain. Spring ST decreased with latitude mainly in the boreal regions of North America, temperate Eurasia, and the arid/semi‐arid regions of Central Asia. This distribution may be related to the increased temperature variance, decreased precipitation, and radiation with latitude. Compared to spring ST, the spatial pattern of temperature sensitivity of autumn phenology (hereafter “autumn ST”) is more heterogeneous, only showing a clear spatial pattern of autumn ST along the latitudinal gradient. Our results highlight the three‐dimensional view to understand the phenological response to climate change and provide new metrics for evaluating phenological models. Accordingly, establishing a dense, high‐quality three‐dimensional observation system of phenology data is necessary for enhancing our ability to both predict phenological changes under changing climatic conditions and to facilitate sustainable management of ecosystems. This study explored spatial pattern of temperature sensitivity of land surface phenology in spring and autumn phenology (spring and autumn ST) based on three geographical dimensions of altitude, latitude, and longitude. Across mid‐ and high‐latitude Northern Hemisphere during 1982–2016, we found distinct spatial patterns of spring and autumn ST along altitudinal, latitudinal, and longitudinal gradients. Geographical gradient of temperature, temperature variance, precipitation, and radiation were possible drivers to the patterns of ST. Our results highlight the three‐dimensional view to understand phenological response to climate change, providing basis for improving phenological observation network and new metrics to evaluate phenology models.</description><subject>Altitude</subject><subject>Arid regions</subject><subject>Arid zones</subject><subject>Autumn</subject><subject>autumn phenology</subject><subject>China</subject><subject>Climate Change</subject><subject>Climate models</subject><subject>Climatic conditions</subject><subject>Dimensional changes</subject><subject>Dimensions</subject><subject>Ecosystem</subject><subject>Ecosystem management</subject><subject>Environmental changes</subject><subject>Europe, Eastern</subject><subject>Herbivores</subject><subject>Latitude</subject><subject>Latitudinal variations</subject><subject>Longitude</subject><subject>North America</subject><subject>Northern Hemisphere</subject><subject>Phenology</subject><subject>Radiation</subject><subject>Seasons</subject><subject>Sensitivity</subject><subject>Spring</subject><subject>Spring (season)</subject><subject>spring phenology</subject><subject>Strategic management</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Temperature</subject><subject>temperature sensitivity</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kLtOw0AQRVcIREKg4AeQJSoKJ7MvP0qIICBFogm01toZPyK_2HWC3PEJfCNfwgYHOqaYGWnOXOleQi4pTKmtWZbEUyoZwBEZU-5Jl4nAO97vUrgUKB-RM2M2AMAZeKdkxJnwJQAbk9dVrhG_Pj7XRYW1KZpalU6SqzpDp6idDqsWteq2Gh2zv3fFruh6p0mdutFdjrp2dphhpzr76rQ51k3ZZP05OUlVafDiMCfk5eF-NX90l8-Lp_nt0k0EDcGVSSJCGXpcxbalkPqC-rb5HLyYqtgLeRgAYsxQxb6X-EKu0yCUPqBg0ud8Qq4H3VY3b1s0XbRpttp6MBET1iUELAwtdTNQiW6M0ZhGrS4qpfuIQrRPMLIJRj8JWvbqoLiNK1z_kb-RWWA2AO9Fif3_StFifjdIfgMV6Hsg</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Gao, Mengdi</creator><creator>Wang, Xuhui</creator><creator>Meng, Fandong</creator><creator>Liu, Qiang</creator><creator>Li, Xiangyi</creator><creator>Zhang, Yuan</creator><creator>Piao, Shilong</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-2332-2873</orcidid><orcidid>https://orcid.org/0000-0001-5462-0078</orcidid><orcidid>https://orcid.org/0000-0001-8057-2292</orcidid><orcidid>https://orcid.org/0000-0003-0818-9816</orcidid></search><sort><creationdate>202009</creationdate><title>Three‐dimensional change in temperature sensitivity of northern vegetation phenology</title><author>Gao, Mengdi ; Wang, Xuhui ; Meng, Fandong ; Liu, Qiang ; Li, Xiangyi ; Zhang, Yuan ; Piao, Shilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4190-5cc495963ab963f0f7417f747306b1ab693980eeb2eab76c745df89570e425733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Altitude</topic><topic>Arid regions</topic><topic>Arid zones</topic><topic>Autumn</topic><topic>autumn phenology</topic><topic>China</topic><topic>Climate Change</topic><topic>Climate models</topic><topic>Climatic conditions</topic><topic>Dimensional changes</topic><topic>Dimensions</topic><topic>Ecosystem</topic><topic>Ecosystem management</topic><topic>Environmental changes</topic><topic>Europe, Eastern</topic><topic>Herbivores</topic><topic>Latitude</topic><topic>Latitudinal variations</topic><topic>Longitude</topic><topic>North America</topic><topic>Northern Hemisphere</topic><topic>Phenology</topic><topic>Radiation</topic><topic>Seasons</topic><topic>Sensitivity</topic><topic>Spring</topic><topic>Spring (season)</topic><topic>spring phenology</topic><topic>Strategic management</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Temperature</topic><topic>temperature sensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Mengdi</creatorcontrib><creatorcontrib>Wang, Xuhui</creatorcontrib><creatorcontrib>Meng, Fandong</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Li, Xiangyi</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Piao, Shilong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Mengdi</au><au>Wang, Xuhui</au><au>Meng, Fandong</au><au>Liu, Qiang</au><au>Li, Xiangyi</au><au>Zhang, Yuan</au><au>Piao, Shilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three‐dimensional change in temperature sensitivity of northern vegetation phenology</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2020-09</date><risdate>2020</risdate><volume>26</volume><issue>9</issue><spage>5189</spage><epage>5201</epage><pages>5189-5201</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Understanding how the temperature sensitivity of phenology changes with three spatial dimensions (altitude, latitude, and longitude) is critical for the prediction of future phenological synchronization. Here we investigate the spatial pattern of temperature sensitivity of spring and autumn phenology with altitude, latitude, and longitude during 1982–2016 across mid‐ and high‐latitude Northern Hemisphere (north of 30°N). We find distinct spatial patterns of temperature sensitivity of spring phenology (hereafter “spring ST”) among altitudinal, latitudinal, and longitudinal gradient. Spring ST decreased with altitude mostly over eastern Europe, whereas the opposite occurs in eastern North America and the north China plain. Spring ST decreased with latitude mainly in the boreal regions of North America, temperate Eurasia, and the arid/semi‐arid regions of Central Asia. This distribution may be related to the increased temperature variance, decreased precipitation, and radiation with latitude. Compared to spring ST, the spatial pattern of temperature sensitivity of autumn phenology (hereafter “autumn ST”) is more heterogeneous, only showing a clear spatial pattern of autumn ST along the latitudinal gradient. Our results highlight the three‐dimensional view to understand the phenological response to climate change and provide new metrics for evaluating phenological models. Accordingly, establishing a dense, high‐quality three‐dimensional observation system of phenology data is necessary for enhancing our ability to both predict phenological changes under changing climatic conditions and to facilitate sustainable management of ecosystems. This study explored spatial pattern of temperature sensitivity of land surface phenology in spring and autumn phenology (spring and autumn ST) based on three geographical dimensions of altitude, latitude, and longitude. Across mid‐ and high‐latitude Northern Hemisphere during 1982–2016, we found distinct spatial patterns of spring and autumn ST along altitudinal, latitudinal, and longitudinal gradients. Geographical gradient of temperature, temperature variance, precipitation, and radiation were possible drivers to the patterns of ST. Our results highlight the three‐dimensional view to understand phenological response to climate change, providing basis for improving phenological observation network and new metrics to evaluate phenology models.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32475002</pmid><doi>10.1111/gcb.15200</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2332-2873</orcidid><orcidid>https://orcid.org/0000-0001-5462-0078</orcidid><orcidid>https://orcid.org/0000-0001-8057-2292</orcidid><orcidid>https://orcid.org/0000-0003-0818-9816</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2020-09, Vol.26 (9), p.5189-5201
issn 1354-1013
1365-2486
language eng
recordid cdi_proquest_journals_2432408299
source MEDLINE; Wiley Online Library (Online service)
subjects Altitude
Arid regions
Arid zones
Autumn
autumn phenology
China
Climate Change
Climate models
Climatic conditions
Dimensional changes
Dimensions
Ecosystem
Ecosystem management
Environmental changes
Europe, Eastern
Herbivores
Latitude
Latitudinal variations
Longitude
North America
Northern Hemisphere
Phenology
Radiation
Seasons
Sensitivity
Spring
Spring (season)
spring phenology
Strategic management
Synchronism
Synchronization
Temperature
temperature sensitivity
title Three‐dimensional change in temperature sensitivity of northern vegetation phenology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%E2%80%90dimensional%20change%20in%20temperature%20sensitivity%20of%20northern%20vegetation%20phenology&rft.jtitle=Global%20change%20biology&rft.au=Gao,%20Mengdi&rft.date=2020-09&rft.volume=26&rft.issue=9&rft.spage=5189&rft.epage=5201&rft.pages=5189-5201&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.15200&rft_dat=%3Cproquest_cross%3E2432408299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432408299&rft_id=info:pmid/32475002&rfr_iscdi=true