Translesion DNA Synthesis and Reinitiation of DNA Synthesis in Chemotherapy Resistance

Many chemotherapy drugs block tumor cell division by damaging DNA. DNA polymerases eta (Pol η), iota (Pol ι), kappa (Pol κ), REV1 of the Y-family and zeta (Pol ζ) of the B-family efficiently incorporate nucleotides opposite a number of DNA lesions during translesion DNA synthesis. Primase-polymerase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Moscow) 2020-08, Vol.85 (8), p.869-882
Hauptverfasser: Shilkin, E. S., Boldinova, E. O., Stolyarenko, A. D., Goncharova, R. I., Chuprov-Netochin, R. N., Smal, M. P., Makarova, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 882
container_issue 8
container_start_page 869
container_title Biochemistry (Moscow)
container_volume 85
creator Shilkin, E. S.
Boldinova, E. O.
Stolyarenko, A. D.
Goncharova, R. I.
Chuprov-Netochin, R. N.
Smal, M. P.
Makarova, A. V.
description Many chemotherapy drugs block tumor cell division by damaging DNA. DNA polymerases eta (Pol η), iota (Pol ι), kappa (Pol κ), REV1 of the Y-family and zeta (Pol ζ) of the B-family efficiently incorporate nucleotides opposite a number of DNA lesions during translesion DNA synthesis. Primase-polymerase PrimPol and the Pol α-primase complex reinitiate DNA synthesis downstream of the damaged sites using their DNA primase activity. These enzymes can decrease the efficacy of chemotherapy drugs, contribute to the survival of tumor cells and to the progression of malignant diseases. DNA polymerases are promising targets for increasing the effectiveness of chemotherapy, and mutations and polymorphisms in some DNA polymerases can serve as additional prognostic markers in a number of oncological disorders.
doi_str_mv 10.1134/S0006297920080039
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2432261899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632179259</galeid><sourcerecordid>A632179259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-435fffa1d380d68fd590911e5f2e1df71f555a7c5d06d68bf930955f2c2ef55d3</originalsourceid><addsrcrecordid>eNp1kUtPAjEUhRujUUR_gBszievB23Y6TJcEnwnRRNDtpExbKGFabIcF_95OQImvdNGce75z-7gIXWDoYUyz6zEA5IT3OQEoACg_QB2cQ5FSyOAQdVo7bf0TdBrCIkoCnB6jExoBxrOig94mXtiwVME4m9w8DZLxxjbzKEMirExelLGmMaJpbad_EMYmw7mqXZRerDaRjtVG2EqdoSMtlkGd7_Yuer27nQwf0tHz_eNwMEqrjPImzSjTWgssaQEyL7RkHDjGimmisNR9rBljol8xCXn0p5pT4Cy6FVHRkrSLrrZ9V969r1VoyoVbexuPLElGCclxwfmemomlKo3VrvGiqk2oykFOCY4fyFqq9wcVl1S1qZxV2sT6twDeBirvQvBKlytvauE3JYayHVD5a0Axc7m78HpaK_mV-JxIBMgWCNGyM-X3L_q_6wcSGJf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432261899</pqid></control><display><type>article</type><title>Translesion DNA Synthesis and Reinitiation of DNA Synthesis in Chemotherapy Resistance</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shilkin, E. S. ; Boldinova, E. O. ; Stolyarenko, A. D. ; Goncharova, R. I. ; Chuprov-Netochin, R. N. ; Smal, M. P. ; Makarova, A. V.</creator><creatorcontrib>Shilkin, E. S. ; Boldinova, E. O. ; Stolyarenko, A. D. ; Goncharova, R. I. ; Chuprov-Netochin, R. N. ; Smal, M. P. ; Makarova, A. V.</creatorcontrib><description>Many chemotherapy drugs block tumor cell division by damaging DNA. DNA polymerases eta (Pol η), iota (Pol ι), kappa (Pol κ), REV1 of the Y-family and zeta (Pol ζ) of the B-family efficiently incorporate nucleotides opposite a number of DNA lesions during translesion DNA synthesis. Primase-polymerase PrimPol and the Pol α-primase complex reinitiate DNA synthesis downstream of the damaged sites using their DNA primase activity. These enzymes can decrease the efficacy of chemotherapy drugs, contribute to the survival of tumor cells and to the progression of malignant diseases. DNA polymerases are promising targets for increasing the effectiveness of chemotherapy, and mutations and polymorphisms in some DNA polymerases can serve as additional prognostic markers in a number of oncological disorders.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297920080039</identifier><identifier>PMID: 33045948</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Addition polymerization ; Animals ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Cancer ; Cell division ; Chemical synthesis ; Chemoresistance ; Chemotherapy ; Deoxyribonucleic acid ; DNA ; DNA - metabolism ; DNA biosynthesis ; DNA damage ; DNA Damage - drug effects ; DNA polymerase ; DNA polymerases ; DNA primase ; DNA Repair - drug effects ; DNA Replication - drug effects ; DNA synthesis ; DNA-directed DNA polymerase ; DNA-Directed DNA Polymerase - genetics ; DNA-Directed DNA Polymerase - metabolism ; Drug resistance ; Drug Resistance, Neoplasm ; Drugs ; Enzymes ; Genetic polymorphisms ; Humans ; Life Sciences ; Microbiology ; Mutation ; Neoplasms - drug therapy ; Nucleic Acid Synthesis Inhibitors - pharmacology ; Nucleic Acid Synthesis Inhibitors - therapeutic use ; Nucleotides ; Polymorphism, Genetic ; Primase ; Protein Biosynthesis - drug effects ; Review ; Tumor cells ; Tumors</subject><ispartof>Biochemistry (Moscow), 2020-08, Vol.85 (8), p.869-882</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-435fffa1d380d68fd590911e5f2e1df71f555a7c5d06d68bf930955f2c2ef55d3</citedby><cites>FETCH-LOGICAL-c439t-435fffa1d380d68fd590911e5f2e1df71f555a7c5d06d68bf930955f2c2ef55d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0006297920080039$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0006297920080039$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33045948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shilkin, E. S.</creatorcontrib><creatorcontrib>Boldinova, E. O.</creatorcontrib><creatorcontrib>Stolyarenko, A. D.</creatorcontrib><creatorcontrib>Goncharova, R. I.</creatorcontrib><creatorcontrib>Chuprov-Netochin, R. N.</creatorcontrib><creatorcontrib>Smal, M. P.</creatorcontrib><creatorcontrib>Makarova, A. V.</creatorcontrib><title>Translesion DNA Synthesis and Reinitiation of DNA Synthesis in Chemotherapy Resistance</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><addtitle>Biochemistry (Mosc)</addtitle><description>Many chemotherapy drugs block tumor cell division by damaging DNA. DNA polymerases eta (Pol η), iota (Pol ι), kappa (Pol κ), REV1 of the Y-family and zeta (Pol ζ) of the B-family efficiently incorporate nucleotides opposite a number of DNA lesions during translesion DNA synthesis. Primase-polymerase PrimPol and the Pol α-primase complex reinitiate DNA synthesis downstream of the damaged sites using their DNA primase activity. These enzymes can decrease the efficacy of chemotherapy drugs, contribute to the survival of tumor cells and to the progression of malignant diseases. DNA polymerases are promising targets for increasing the effectiveness of chemotherapy, and mutations and polymorphisms in some DNA polymerases can serve as additional prognostic markers in a number of oncological disorders.</description><subject>Addition polymerization</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Cancer</subject><subject>Cell division</subject><subject>Chemical synthesis</subject><subject>Chemoresistance</subject><subject>Chemotherapy</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA biosynthesis</subject><subject>DNA damage</subject><subject>DNA Damage - drug effects</subject><subject>DNA polymerase</subject><subject>DNA polymerases</subject><subject>DNA primase</subject><subject>DNA Repair - drug effects</subject><subject>DNA Replication - drug effects</subject><subject>DNA synthesis</subject><subject>DNA-directed DNA polymerase</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm</subject><subject>Drugs</subject><subject>Enzymes</subject><subject>Genetic polymorphisms</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Mutation</subject><subject>Neoplasms - drug therapy</subject><subject>Nucleic Acid Synthesis Inhibitors - pharmacology</subject><subject>Nucleic Acid Synthesis Inhibitors - therapeutic use</subject><subject>Nucleotides</subject><subject>Polymorphism, Genetic</subject><subject>Primase</subject><subject>Protein Biosynthesis - drug effects</subject><subject>Review</subject><subject>Tumor cells</subject><subject>Tumors</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtPAjEUhRujUUR_gBszievB23Y6TJcEnwnRRNDtpExbKGFabIcF_95OQImvdNGce75z-7gIXWDoYUyz6zEA5IT3OQEoACg_QB2cQ5FSyOAQdVo7bf0TdBrCIkoCnB6jExoBxrOig94mXtiwVME4m9w8DZLxxjbzKEMirExelLGmMaJpbad_EMYmw7mqXZRerDaRjtVG2EqdoSMtlkGd7_Yuer27nQwf0tHz_eNwMEqrjPImzSjTWgssaQEyL7RkHDjGimmisNR9rBljol8xCXn0p5pT4Cy6FVHRkrSLrrZ9V969r1VoyoVbexuPLElGCclxwfmemomlKo3VrvGiqk2oykFOCY4fyFqq9wcVl1S1qZxV2sT6twDeBirvQvBKlytvauE3JYayHVD5a0Axc7m78HpaK_mV-JxIBMgWCNGyM-X3L_q_6wcSGJf0</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Shilkin, E. S.</creator><creator>Boldinova, E. O.</creator><creator>Stolyarenko, A. D.</creator><creator>Goncharova, R. I.</creator><creator>Chuprov-Netochin, R. N.</creator><creator>Smal, M. P.</creator><creator>Makarova, A. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20200801</creationdate><title>Translesion DNA Synthesis and Reinitiation of DNA Synthesis in Chemotherapy Resistance</title><author>Shilkin, E. S. ; Boldinova, E. O. ; Stolyarenko, A. D. ; Goncharova, R. I. ; Chuprov-Netochin, R. N. ; Smal, M. P. ; Makarova, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-435fffa1d380d68fd590911e5f2e1df71f555a7c5d06d68bf930955f2c2ef55d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Addition polymerization</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Cancer</topic><topic>Cell division</topic><topic>Chemical synthesis</topic><topic>Chemoresistance</topic><topic>Chemotherapy</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA biosynthesis</topic><topic>DNA damage</topic><topic>DNA Damage - drug effects</topic><topic>DNA polymerase</topic><topic>DNA polymerases</topic><topic>DNA primase</topic><topic>DNA Repair - drug effects</topic><topic>DNA Replication - drug effects</topic><topic>DNA synthesis</topic><topic>DNA-directed DNA polymerase</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm</topic><topic>Drugs</topic><topic>Enzymes</topic><topic>Genetic polymorphisms</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Mutation</topic><topic>Neoplasms - drug therapy</topic><topic>Nucleic Acid Synthesis Inhibitors - pharmacology</topic><topic>Nucleic Acid Synthesis Inhibitors - therapeutic use</topic><topic>Nucleotides</topic><topic>Polymorphism, Genetic</topic><topic>Primase</topic><topic>Protein Biosynthesis - drug effects</topic><topic>Review</topic><topic>Tumor cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shilkin, E. S.</creatorcontrib><creatorcontrib>Boldinova, E. O.</creatorcontrib><creatorcontrib>Stolyarenko, A. D.</creatorcontrib><creatorcontrib>Goncharova, R. I.</creatorcontrib><creatorcontrib>Chuprov-Netochin, R. N.</creatorcontrib><creatorcontrib>Smal, M. P.</creatorcontrib><creatorcontrib>Makarova, A. V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shilkin, E. S.</au><au>Boldinova, E. O.</au><au>Stolyarenko, A. D.</au><au>Goncharova, R. I.</au><au>Chuprov-Netochin, R. N.</au><au>Smal, M. P.</au><au>Makarova, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translesion DNA Synthesis and Reinitiation of DNA Synthesis in Chemotherapy Resistance</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><addtitle>Biochemistry (Mosc)</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>85</volume><issue>8</issue><spage>869</spage><epage>882</epage><pages>869-882</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>Many chemotherapy drugs block tumor cell division by damaging DNA. DNA polymerases eta (Pol η), iota (Pol ι), kappa (Pol κ), REV1 of the Y-family and zeta (Pol ζ) of the B-family efficiently incorporate nucleotides opposite a number of DNA lesions during translesion DNA synthesis. Primase-polymerase PrimPol and the Pol α-primase complex reinitiate DNA synthesis downstream of the damaged sites using their DNA primase activity. These enzymes can decrease the efficacy of chemotherapy drugs, contribute to the survival of tumor cells and to the progression of malignant diseases. DNA polymerases are promising targets for increasing the effectiveness of chemotherapy, and mutations and polymorphisms in some DNA polymerases can serve as additional prognostic markers in a number of oncological disorders.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><pmid>33045948</pmid><doi>10.1134/S0006297920080039</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2979
ispartof Biochemistry (Moscow), 2020-08, Vol.85 (8), p.869-882
issn 0006-2979
1608-3040
language eng
recordid cdi_proquest_journals_2432261899
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Addition polymerization
Animals
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Biochemistry
Biomedical and Life Sciences
Biomedicine
Bioorganic Chemistry
Cancer
Cell division
Chemical synthesis
Chemoresistance
Chemotherapy
Deoxyribonucleic acid
DNA
DNA - metabolism
DNA biosynthesis
DNA damage
DNA Damage - drug effects
DNA polymerase
DNA polymerases
DNA primase
DNA Repair - drug effects
DNA Replication - drug effects
DNA synthesis
DNA-directed DNA polymerase
DNA-Directed DNA Polymerase - genetics
DNA-Directed DNA Polymerase - metabolism
Drug resistance
Drug Resistance, Neoplasm
Drugs
Enzymes
Genetic polymorphisms
Humans
Life Sciences
Microbiology
Mutation
Neoplasms - drug therapy
Nucleic Acid Synthesis Inhibitors - pharmacology
Nucleic Acid Synthesis Inhibitors - therapeutic use
Nucleotides
Polymorphism, Genetic
Primase
Protein Biosynthesis - drug effects
Review
Tumor cells
Tumors
title Translesion DNA Synthesis and Reinitiation of DNA Synthesis in Chemotherapy Resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translesion%20DNA%20Synthesis%20and%20Reinitiation%20of%20DNA%20Synthesis%20in%20Chemotherapy%20Resistance&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Shilkin,%20E.%20S.&rft.date=2020-08-01&rft.volume=85&rft.issue=8&rft.spage=869&rft.epage=882&rft.pages=869-882&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297920080039&rft_dat=%3Cgale_proqu%3EA632179259%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432261899&rft_id=info:pmid/33045948&rft_galeid=A632179259&rfr_iscdi=true