Translesion DNA Synthesis and Reinitiation of DNA Synthesis in Chemotherapy Resistance
Many chemotherapy drugs block tumor cell division by damaging DNA. DNA polymerases eta (Pol η), iota (Pol ι), kappa (Pol κ), REV1 of the Y-family and zeta (Pol ζ) of the B-family efficiently incorporate nucleotides opposite a number of DNA lesions during translesion DNA synthesis. Primase-polymerase...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Moscow) 2020-08, Vol.85 (8), p.869-882 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 882 |
---|---|
container_issue | 8 |
container_start_page | 869 |
container_title | Biochemistry (Moscow) |
container_volume | 85 |
creator | Shilkin, E. S. Boldinova, E. O. Stolyarenko, A. D. Goncharova, R. I. Chuprov-Netochin, R. N. Smal, M. P. Makarova, A. V. |
description | Many chemotherapy drugs block tumor cell division by damaging DNA. DNA polymerases eta (Pol η), iota (Pol ι), kappa (Pol κ), REV1 of the Y-family and zeta (Pol ζ) of the B-family efficiently incorporate nucleotides opposite a number of DNA lesions during translesion DNA synthesis. Primase-polymerase PrimPol and the Pol α-primase complex reinitiate DNA synthesis downstream of the damaged sites using their DNA primase activity. These enzymes can decrease the efficacy of chemotherapy drugs, contribute to the survival of tumor cells and to the progression of malignant diseases. DNA polymerases are promising targets for increasing the effectiveness of chemotherapy, and mutations and polymorphisms in some DNA polymerases can serve as additional prognostic markers in a number of oncological disorders. |
doi_str_mv | 10.1134/S0006297920080039 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2432261899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632179259</galeid><sourcerecordid>A632179259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-435fffa1d380d68fd590911e5f2e1df71f555a7c5d06d68bf930955f2c2ef55d3</originalsourceid><addsrcrecordid>eNp1kUtPAjEUhRujUUR_gBszievB23Y6TJcEnwnRRNDtpExbKGFabIcF_95OQImvdNGce75z-7gIXWDoYUyz6zEA5IT3OQEoACg_QB2cQ5FSyOAQdVo7bf0TdBrCIkoCnB6jExoBxrOig94mXtiwVME4m9w8DZLxxjbzKEMirExelLGmMaJpbad_EMYmw7mqXZRerDaRjtVG2EqdoSMtlkGd7_Yuer27nQwf0tHz_eNwMEqrjPImzSjTWgssaQEyL7RkHDjGimmisNR9rBljol8xCXn0p5pT4Cy6FVHRkrSLrrZ9V969r1VoyoVbexuPLElGCclxwfmemomlKo3VrvGiqk2oykFOCY4fyFqq9wcVl1S1qZxV2sT6twDeBirvQvBKlytvauE3JYayHVD5a0Axc7m78HpaK_mV-JxIBMgWCNGyM-X3L_q_6wcSGJf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432261899</pqid></control><display><type>article</type><title>Translesion DNA Synthesis and Reinitiation of DNA Synthesis in Chemotherapy Resistance</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shilkin, E. S. ; Boldinova, E. O. ; Stolyarenko, A. D. ; Goncharova, R. I. ; Chuprov-Netochin, R. N. ; Smal, M. P. ; Makarova, A. V.</creator><creatorcontrib>Shilkin, E. S. ; Boldinova, E. O. ; Stolyarenko, A. D. ; Goncharova, R. I. ; Chuprov-Netochin, R. N. ; Smal, M. P. ; Makarova, A. V.</creatorcontrib><description>Many chemotherapy drugs block tumor cell division by damaging DNA. DNA polymerases eta (Pol η), iota (Pol ι), kappa (Pol κ), REV1 of the Y-family and zeta (Pol ζ) of the B-family efficiently incorporate nucleotides opposite a number of DNA lesions during translesion DNA synthesis. Primase-polymerase PrimPol and the Pol α-primase complex reinitiate DNA synthesis downstream of the damaged sites using their DNA primase activity. These enzymes can decrease the efficacy of chemotherapy drugs, contribute to the survival of tumor cells and to the progression of malignant diseases. DNA polymerases are promising targets for increasing the effectiveness of chemotherapy, and mutations and polymorphisms in some DNA polymerases can serve as additional prognostic markers in a number of oncological disorders.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297920080039</identifier><identifier>PMID: 33045948</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Addition polymerization ; Animals ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Cancer ; Cell division ; Chemical synthesis ; Chemoresistance ; Chemotherapy ; Deoxyribonucleic acid ; DNA ; DNA - metabolism ; DNA biosynthesis ; DNA damage ; DNA Damage - drug effects ; DNA polymerase ; DNA polymerases ; DNA primase ; DNA Repair - drug effects ; DNA Replication - drug effects ; DNA synthesis ; DNA-directed DNA polymerase ; DNA-Directed DNA Polymerase - genetics ; DNA-Directed DNA Polymerase - metabolism ; Drug resistance ; Drug Resistance, Neoplasm ; Drugs ; Enzymes ; Genetic polymorphisms ; Humans ; Life Sciences ; Microbiology ; Mutation ; Neoplasms - drug therapy ; Nucleic Acid Synthesis Inhibitors - pharmacology ; Nucleic Acid Synthesis Inhibitors - therapeutic use ; Nucleotides ; Polymorphism, Genetic ; Primase ; Protein Biosynthesis - drug effects ; Review ; Tumor cells ; Tumors</subject><ispartof>Biochemistry (Moscow), 2020-08, Vol.85 (8), p.869-882</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-435fffa1d380d68fd590911e5f2e1df71f555a7c5d06d68bf930955f2c2ef55d3</citedby><cites>FETCH-LOGICAL-c439t-435fffa1d380d68fd590911e5f2e1df71f555a7c5d06d68bf930955f2c2ef55d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0006297920080039$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0006297920080039$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33045948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shilkin, E. S.</creatorcontrib><creatorcontrib>Boldinova, E. O.</creatorcontrib><creatorcontrib>Stolyarenko, A. D.</creatorcontrib><creatorcontrib>Goncharova, R. I.</creatorcontrib><creatorcontrib>Chuprov-Netochin, R. N.</creatorcontrib><creatorcontrib>Smal, M. P.</creatorcontrib><creatorcontrib>Makarova, A. V.</creatorcontrib><title>Translesion DNA Synthesis and Reinitiation of DNA Synthesis in Chemotherapy Resistance</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><addtitle>Biochemistry (Mosc)</addtitle><description>Many chemotherapy drugs block tumor cell division by damaging DNA. DNA polymerases eta (Pol η), iota (Pol ι), kappa (Pol κ), REV1 of the Y-family and zeta (Pol ζ) of the B-family efficiently incorporate nucleotides opposite a number of DNA lesions during translesion DNA synthesis. Primase-polymerase PrimPol and the Pol α-primase complex reinitiate DNA synthesis downstream of the damaged sites using their DNA primase activity. These enzymes can decrease the efficacy of chemotherapy drugs, contribute to the survival of tumor cells and to the progression of malignant diseases. DNA polymerases are promising targets for increasing the effectiveness of chemotherapy, and mutations and polymorphisms in some DNA polymerases can serve as additional prognostic markers in a number of oncological disorders.</description><subject>Addition polymerization</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Cancer</subject><subject>Cell division</subject><subject>Chemical synthesis</subject><subject>Chemoresistance</subject><subject>Chemotherapy</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA biosynthesis</subject><subject>DNA damage</subject><subject>DNA Damage - drug effects</subject><subject>DNA polymerase</subject><subject>DNA polymerases</subject><subject>DNA primase</subject><subject>DNA Repair - drug effects</subject><subject>DNA Replication - drug effects</subject><subject>DNA synthesis</subject><subject>DNA-directed DNA polymerase</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm</subject><subject>Drugs</subject><subject>Enzymes</subject><subject>Genetic polymorphisms</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Mutation</subject><subject>Neoplasms - drug therapy</subject><subject>Nucleic Acid Synthesis Inhibitors - pharmacology</subject><subject>Nucleic Acid Synthesis Inhibitors - therapeutic use</subject><subject>Nucleotides</subject><subject>Polymorphism, Genetic</subject><subject>Primase</subject><subject>Protein Biosynthesis - drug effects</subject><subject>Review</subject><subject>Tumor cells</subject><subject>Tumors</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtPAjEUhRujUUR_gBszievB23Y6TJcEnwnRRNDtpExbKGFabIcF_95OQImvdNGce75z-7gIXWDoYUyz6zEA5IT3OQEoACg_QB2cQ5FSyOAQdVo7bf0TdBrCIkoCnB6jExoBxrOig94mXtiwVME4m9w8DZLxxjbzKEMirExelLGmMaJpbad_EMYmw7mqXZRerDaRjtVG2EqdoSMtlkGd7_Yuer27nQwf0tHz_eNwMEqrjPImzSjTWgssaQEyL7RkHDjGimmisNR9rBljol8xCXn0p5pT4Cy6FVHRkrSLrrZ9V969r1VoyoVbexuPLElGCclxwfmemomlKo3VrvGiqk2oykFOCY4fyFqq9wcVl1S1qZxV2sT6twDeBirvQvBKlytvauE3JYayHVD5a0Axc7m78HpaK_mV-JxIBMgWCNGyM-X3L_q_6wcSGJf0</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Shilkin, E. S.</creator><creator>Boldinova, E. O.</creator><creator>Stolyarenko, A. D.</creator><creator>Goncharova, R. I.</creator><creator>Chuprov-Netochin, R. N.</creator><creator>Smal, M. P.</creator><creator>Makarova, A. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20200801</creationdate><title>Translesion DNA Synthesis and Reinitiation of DNA Synthesis in Chemotherapy Resistance</title><author>Shilkin, E. S. ; Boldinova, E. O. ; Stolyarenko, A. D. ; Goncharova, R. I. ; Chuprov-Netochin, R. N. ; Smal, M. P. ; Makarova, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-435fffa1d380d68fd590911e5f2e1df71f555a7c5d06d68bf930955f2c2ef55d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Addition polymerization</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Cancer</topic><topic>Cell division</topic><topic>Chemical synthesis</topic><topic>Chemoresistance</topic><topic>Chemotherapy</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA biosynthesis</topic><topic>DNA damage</topic><topic>DNA Damage - drug effects</topic><topic>DNA polymerase</topic><topic>DNA polymerases</topic><topic>DNA primase</topic><topic>DNA Repair - drug effects</topic><topic>DNA Replication - drug effects</topic><topic>DNA synthesis</topic><topic>DNA-directed DNA polymerase</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm</topic><topic>Drugs</topic><topic>Enzymes</topic><topic>Genetic polymorphisms</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Mutation</topic><topic>Neoplasms - drug therapy</topic><topic>Nucleic Acid Synthesis Inhibitors - pharmacology</topic><topic>Nucleic Acid Synthesis Inhibitors - therapeutic use</topic><topic>Nucleotides</topic><topic>Polymorphism, Genetic</topic><topic>Primase</topic><topic>Protein Biosynthesis - drug effects</topic><topic>Review</topic><topic>Tumor cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shilkin, E. S.</creatorcontrib><creatorcontrib>Boldinova, E. O.</creatorcontrib><creatorcontrib>Stolyarenko, A. D.</creatorcontrib><creatorcontrib>Goncharova, R. I.</creatorcontrib><creatorcontrib>Chuprov-Netochin, R. N.</creatorcontrib><creatorcontrib>Smal, M. P.</creatorcontrib><creatorcontrib>Makarova, A. V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shilkin, E. S.</au><au>Boldinova, E. O.</au><au>Stolyarenko, A. D.</au><au>Goncharova, R. I.</au><au>Chuprov-Netochin, R. N.</au><au>Smal, M. P.</au><au>Makarova, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translesion DNA Synthesis and Reinitiation of DNA Synthesis in Chemotherapy Resistance</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><addtitle>Biochemistry (Mosc)</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>85</volume><issue>8</issue><spage>869</spage><epage>882</epage><pages>869-882</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>Many chemotherapy drugs block tumor cell division by damaging DNA. DNA polymerases eta (Pol η), iota (Pol ι), kappa (Pol κ), REV1 of the Y-family and zeta (Pol ζ) of the B-family efficiently incorporate nucleotides opposite a number of DNA lesions during translesion DNA synthesis. Primase-polymerase PrimPol and the Pol α-primase complex reinitiate DNA synthesis downstream of the damaged sites using their DNA primase activity. These enzymes can decrease the efficacy of chemotherapy drugs, contribute to the survival of tumor cells and to the progression of malignant diseases. DNA polymerases are promising targets for increasing the effectiveness of chemotherapy, and mutations and polymorphisms in some DNA polymerases can serve as additional prognostic markers in a number of oncological disorders.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><pmid>33045948</pmid><doi>10.1134/S0006297920080039</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2979 |
ispartof | Biochemistry (Moscow), 2020-08, Vol.85 (8), p.869-882 |
issn | 0006-2979 1608-3040 |
language | eng |
recordid | cdi_proquest_journals_2432261899 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Addition polymerization Animals Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Biochemistry Biomedical and Life Sciences Biomedicine Bioorganic Chemistry Cancer Cell division Chemical synthesis Chemoresistance Chemotherapy Deoxyribonucleic acid DNA DNA - metabolism DNA biosynthesis DNA damage DNA Damage - drug effects DNA polymerase DNA polymerases DNA primase DNA Repair - drug effects DNA Replication - drug effects DNA synthesis DNA-directed DNA polymerase DNA-Directed DNA Polymerase - genetics DNA-Directed DNA Polymerase - metabolism Drug resistance Drug Resistance, Neoplasm Drugs Enzymes Genetic polymorphisms Humans Life Sciences Microbiology Mutation Neoplasms - drug therapy Nucleic Acid Synthesis Inhibitors - pharmacology Nucleic Acid Synthesis Inhibitors - therapeutic use Nucleotides Polymorphism, Genetic Primase Protein Biosynthesis - drug effects Review Tumor cells Tumors |
title | Translesion DNA Synthesis and Reinitiation of DNA Synthesis in Chemotherapy Resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translesion%20DNA%20Synthesis%20and%20Reinitiation%20of%20DNA%20Synthesis%20in%20Chemotherapy%20Resistance&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Shilkin,%20E.%20S.&rft.date=2020-08-01&rft.volume=85&rft.issue=8&rft.spage=869&rft.epage=882&rft.pages=869-882&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297920080039&rft_dat=%3Cgale_proqu%3EA632179259%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432261899&rft_id=info:pmid/33045948&rft_galeid=A632179259&rfr_iscdi=true |