The Hanabi challenge: A new frontier for AI research

From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 2020-03, Vol.280, p.103216-19, Article 103216
Hauptverfasser: Bard, Nolan, Foerster, Jakob N., Chandar, Sarath, Burch, Neil, Lanctot, Marc, Song, H. Francis, Parisotto, Emilio, Dumoulin, Vincent, Moitra, Subhodeep, Hughes, Edward, Dunning, Iain, Mourad, Shibl, Larochelle, Hugo, Bellemare, Marc G., Bowling, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue
container_start_page 103216
container_title Artificial intelligence
container_volume 280
creator Bard, Nolan
Foerster, Jakob N.
Chandar, Sarath
Burch, Neil
Lanctot, Marc
Song, H. Francis
Parisotto, Emilio
Dumoulin, Vincent
Moitra, Subhodeep
Hughes, Edward
Dunning, Iain
Mourad, Shibl
Larochelle, Hugo
Bellemare, Marc G.
Bowling, Michael
description From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some variants of poker. As with their predecessors of chess, checkers, and backgammon, these game domains have driven research by providing sophisticated yet well-defined challenges for artificial intelligence practitioners. We continue this tradition by proposing the game of Hanabi as a new challenge domain with novel problems that arise from its combination of purely cooperative gameplay with two to five players and imperfect information. In particular, we argue that Hanabi elevates reasoning about the beliefs and intentions of other agents to the foreground. We believe developing novel techniques for such theory of mind reasoning will not only be crucial for success in Hanabi, but also in broader collaborative efforts, especially those with human partners. To facilitate future research, we introduce the open-source Hanabi Learning Environment, propose an experimental framework for the research community to evaluate algorithmic advances, and assess the performance of current state-of-the-art techniques.
doi_str_mv 10.1016/j.artint.2019.103216
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2431937481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370219300116</els_id><sourcerecordid>2431937481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-6c84fe0bf4bc38e77cc0b02d243a6f57c00899bb50b16d8d7e63167aa25339353</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-Aw8Bz10nSZs0HoRlUXdhwct6Dmk6sS1ruyZdxX9vlnr2NMzjvTfMR8gtgwUDJu-7hQ1j248LDkwnSXAmz8iMlYpnSnN2TmYAkGdCAb8kVzF2aRVasxnJdw3Ste1t1VLX2P0e-3d8oEva4zf1YejHFgP1Q6DLDQ0Y0QbXXJMLb_cRb_7mnLw9P-1W62z7-rJZLbeZEyWMmXRl7hEqn1dJQKWcgwp4zXNhpS-UAyi1rqoCKibrslYoBZPKWl4IoUUh5uRu6j2E4fOIcTTdcAx9OmlSB9NC5SVLrnxyuTDEGNCbQ2g_bPgxDMyJj-nMxMec-JiJT4o9TjFMH3ylL010LfYO6zagG009tP8X_AKq822R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431937481</pqid></control><display><type>article</type><title>The Hanabi challenge: A new frontier for AI research</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bard, Nolan ; Foerster, Jakob N. ; Chandar, Sarath ; Burch, Neil ; Lanctot, Marc ; Song, H. Francis ; Parisotto, Emilio ; Dumoulin, Vincent ; Moitra, Subhodeep ; Hughes, Edward ; Dunning, Iain ; Mourad, Shibl ; Larochelle, Hugo ; Bellemare, Marc G. ; Bowling, Michael</creator><creatorcontrib>Bard, Nolan ; Foerster, Jakob N. ; Chandar, Sarath ; Burch, Neil ; Lanctot, Marc ; Song, H. Francis ; Parisotto, Emilio ; Dumoulin, Vincent ; Moitra, Subhodeep ; Hughes, Edward ; Dunning, Iain ; Mourad, Shibl ; Larochelle, Hugo ; Bellemare, Marc G. ; Bowling, Michael</creatorcontrib><description>From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some variants of poker. As with their predecessors of chess, checkers, and backgammon, these game domains have driven research by providing sophisticated yet well-defined challenges for artificial intelligence practitioners. We continue this tradition by proposing the game of Hanabi as a new challenge domain with novel problems that arise from its combination of purely cooperative gameplay with two to five players and imperfect information. In particular, we argue that Hanabi elevates reasoning about the beliefs and intentions of other agents to the foreground. We believe developing novel techniques for such theory of mind reasoning will not only be crucial for success in Hanabi, but also in broader collaborative efforts, especially those with human partners. To facilitate future research, we introduce the open-source Hanabi Learning Environment, propose an experimental framework for the research community to evaluate algorithmic advances, and assess the performance of current state-of-the-art techniques.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/j.artint.2019.103216</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Agents (artificial intelligence) ; Artificial intelligence ; Challenge paper ; Checkers ; Chess ; Communication ; Cooperative ; Decision making ; Domains ; Games ; Imperfect information ; Machine learning ; Multi-agent learning ; Reasoning ; Reinforcement learning ; Theory of mind</subject><ispartof>Artificial intelligence, 2020-03, Vol.280, p.103216-19, Article 103216</ispartof><rights>2019 The Authors</rights><rights>Copyright Elsevier Science Ltd. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-6c84fe0bf4bc38e77cc0b02d243a6f57c00899bb50b16d8d7e63167aa25339353</citedby><cites>FETCH-LOGICAL-c380t-6c84fe0bf4bc38e77cc0b02d243a6f57c00899bb50b16d8d7e63167aa25339353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artint.2019.103216$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bard, Nolan</creatorcontrib><creatorcontrib>Foerster, Jakob N.</creatorcontrib><creatorcontrib>Chandar, Sarath</creatorcontrib><creatorcontrib>Burch, Neil</creatorcontrib><creatorcontrib>Lanctot, Marc</creatorcontrib><creatorcontrib>Song, H. Francis</creatorcontrib><creatorcontrib>Parisotto, Emilio</creatorcontrib><creatorcontrib>Dumoulin, Vincent</creatorcontrib><creatorcontrib>Moitra, Subhodeep</creatorcontrib><creatorcontrib>Hughes, Edward</creatorcontrib><creatorcontrib>Dunning, Iain</creatorcontrib><creatorcontrib>Mourad, Shibl</creatorcontrib><creatorcontrib>Larochelle, Hugo</creatorcontrib><creatorcontrib>Bellemare, Marc G.</creatorcontrib><creatorcontrib>Bowling, Michael</creatorcontrib><title>The Hanabi challenge: A new frontier for AI research</title><title>Artificial intelligence</title><description>From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some variants of poker. As with their predecessors of chess, checkers, and backgammon, these game domains have driven research by providing sophisticated yet well-defined challenges for artificial intelligence practitioners. We continue this tradition by proposing the game of Hanabi as a new challenge domain with novel problems that arise from its combination of purely cooperative gameplay with two to five players and imperfect information. In particular, we argue that Hanabi elevates reasoning about the beliefs and intentions of other agents to the foreground. We believe developing novel techniques for such theory of mind reasoning will not only be crucial for success in Hanabi, but also in broader collaborative efforts, especially those with human partners. To facilitate future research, we introduce the open-source Hanabi Learning Environment, propose an experimental framework for the research community to evaluate algorithmic advances, and assess the performance of current state-of-the-art techniques.</description><subject>Agents (artificial intelligence)</subject><subject>Artificial intelligence</subject><subject>Challenge paper</subject><subject>Checkers</subject><subject>Chess</subject><subject>Communication</subject><subject>Cooperative</subject><subject>Decision making</subject><subject>Domains</subject><subject>Games</subject><subject>Imperfect information</subject><subject>Machine learning</subject><subject>Multi-agent learning</subject><subject>Reasoning</subject><subject>Reinforcement learning</subject><subject>Theory of mind</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-Aw8Bz10nSZs0HoRlUXdhwct6Dmk6sS1ruyZdxX9vlnr2NMzjvTfMR8gtgwUDJu-7hQ1j248LDkwnSXAmz8iMlYpnSnN2TmYAkGdCAb8kVzF2aRVasxnJdw3Ste1t1VLX2P0e-3d8oEva4zf1YejHFgP1Q6DLDQ0Y0QbXXJMLb_cRb_7mnLw9P-1W62z7-rJZLbeZEyWMmXRl7hEqn1dJQKWcgwp4zXNhpS-UAyi1rqoCKibrslYoBZPKWl4IoUUh5uRu6j2E4fOIcTTdcAx9OmlSB9NC5SVLrnxyuTDEGNCbQ2g_bPgxDMyJj-nMxMec-JiJT4o9TjFMH3ylL010LfYO6zagG009tP8X_AKq822R</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Bard, Nolan</creator><creator>Foerster, Jakob N.</creator><creator>Chandar, Sarath</creator><creator>Burch, Neil</creator><creator>Lanctot, Marc</creator><creator>Song, H. Francis</creator><creator>Parisotto, Emilio</creator><creator>Dumoulin, Vincent</creator><creator>Moitra, Subhodeep</creator><creator>Hughes, Edward</creator><creator>Dunning, Iain</creator><creator>Mourad, Shibl</creator><creator>Larochelle, Hugo</creator><creator>Bellemare, Marc G.</creator><creator>Bowling, Michael</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202003</creationdate><title>The Hanabi challenge: A new frontier for AI research</title><author>Bard, Nolan ; Foerster, Jakob N. ; Chandar, Sarath ; Burch, Neil ; Lanctot, Marc ; Song, H. Francis ; Parisotto, Emilio ; Dumoulin, Vincent ; Moitra, Subhodeep ; Hughes, Edward ; Dunning, Iain ; Mourad, Shibl ; Larochelle, Hugo ; Bellemare, Marc G. ; Bowling, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-6c84fe0bf4bc38e77cc0b02d243a6f57c00899bb50b16d8d7e63167aa25339353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agents (artificial intelligence)</topic><topic>Artificial intelligence</topic><topic>Challenge paper</topic><topic>Checkers</topic><topic>Chess</topic><topic>Communication</topic><topic>Cooperative</topic><topic>Decision making</topic><topic>Domains</topic><topic>Games</topic><topic>Imperfect information</topic><topic>Machine learning</topic><topic>Multi-agent learning</topic><topic>Reasoning</topic><topic>Reinforcement learning</topic><topic>Theory of mind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bard, Nolan</creatorcontrib><creatorcontrib>Foerster, Jakob N.</creatorcontrib><creatorcontrib>Chandar, Sarath</creatorcontrib><creatorcontrib>Burch, Neil</creatorcontrib><creatorcontrib>Lanctot, Marc</creatorcontrib><creatorcontrib>Song, H. Francis</creatorcontrib><creatorcontrib>Parisotto, Emilio</creatorcontrib><creatorcontrib>Dumoulin, Vincent</creatorcontrib><creatorcontrib>Moitra, Subhodeep</creatorcontrib><creatorcontrib>Hughes, Edward</creatorcontrib><creatorcontrib>Dunning, Iain</creatorcontrib><creatorcontrib>Mourad, Shibl</creatorcontrib><creatorcontrib>Larochelle, Hugo</creatorcontrib><creatorcontrib>Bellemare, Marc G.</creatorcontrib><creatorcontrib>Bowling, Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bard, Nolan</au><au>Foerster, Jakob N.</au><au>Chandar, Sarath</au><au>Burch, Neil</au><au>Lanctot, Marc</au><au>Song, H. Francis</au><au>Parisotto, Emilio</au><au>Dumoulin, Vincent</au><au>Moitra, Subhodeep</au><au>Hughes, Edward</au><au>Dunning, Iain</au><au>Mourad, Shibl</au><au>Larochelle, Hugo</au><au>Bellemare, Marc G.</au><au>Bowling, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hanabi challenge: A new frontier for AI research</atitle><jtitle>Artificial intelligence</jtitle><date>2020-03</date><risdate>2020</risdate><volume>280</volume><spage>103216</spage><epage>19</epage><pages>103216-19</pages><artnum>103216</artnum><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some variants of poker. As with their predecessors of chess, checkers, and backgammon, these game domains have driven research by providing sophisticated yet well-defined challenges for artificial intelligence practitioners. We continue this tradition by proposing the game of Hanabi as a new challenge domain with novel problems that arise from its combination of purely cooperative gameplay with two to five players and imperfect information. In particular, we argue that Hanabi elevates reasoning about the beliefs and intentions of other agents to the foreground. We believe developing novel techniques for such theory of mind reasoning will not only be crucial for success in Hanabi, but also in broader collaborative efforts, especially those with human partners. To facilitate future research, we introduce the open-source Hanabi Learning Environment, propose an experimental framework for the research community to evaluate algorithmic advances, and assess the performance of current state-of-the-art techniques.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.artint.2019.103216</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-3702
ispartof Artificial intelligence, 2020-03, Vol.280, p.103216-19, Article 103216
issn 0004-3702
1872-7921
language eng
recordid cdi_proquest_journals_2431937481
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Agents (artificial intelligence)
Artificial intelligence
Challenge paper
Checkers
Chess
Communication
Cooperative
Decision making
Domains
Games
Imperfect information
Machine learning
Multi-agent learning
Reasoning
Reinforcement learning
Theory of mind
title The Hanabi challenge: A new frontier for AI research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hanabi%20challenge:%20A%20new%20frontier%20for%20AI%20research&rft.jtitle=Artificial%20intelligence&rft.au=Bard,%20Nolan&rft.date=2020-03&rft.volume=280&rft.spage=103216&rft.epage=19&rft.pages=103216-19&rft.artnum=103216&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/j.artint.2019.103216&rft_dat=%3Cproquest_cross%3E2431937481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431937481&rft_id=info:pmid/&rft_els_id=S0004370219300116&rfr_iscdi=true