The Hanabi challenge: A new frontier for AI research
From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence 2020-03, Vol.280, p.103216-19, Article 103216 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | |
container_start_page | 103216 |
container_title | Artificial intelligence |
container_volume | 280 |
creator | Bard, Nolan Foerster, Jakob N. Chandar, Sarath Burch, Neil Lanctot, Marc Song, H. Francis Parisotto, Emilio Dumoulin, Vincent Moitra, Subhodeep Hughes, Edward Dunning, Iain Mourad, Shibl Larochelle, Hugo Bellemare, Marc G. Bowling, Michael |
description | From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some variants of poker. As with their predecessors of chess, checkers, and backgammon, these game domains have driven research by providing sophisticated yet well-defined challenges for artificial intelligence practitioners. We continue this tradition by proposing the game of Hanabi as a new challenge domain with novel problems that arise from its combination of purely cooperative gameplay with two to five players and imperfect information. In particular, we argue that Hanabi elevates reasoning about the beliefs and intentions of other agents to the foreground. We believe developing novel techniques for such theory of mind reasoning will not only be crucial for success in Hanabi, but also in broader collaborative efforts, especially those with human partners. To facilitate future research, we introduce the open-source Hanabi Learning Environment, propose an experimental framework for the research community to evaluate algorithmic advances, and assess the performance of current state-of-the-art techniques. |
doi_str_mv | 10.1016/j.artint.2019.103216 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2431937481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370219300116</els_id><sourcerecordid>2431937481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-6c84fe0bf4bc38e77cc0b02d243a6f57c00899bb50b16d8d7e63167aa25339353</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-Aw8Bz10nSZs0HoRlUXdhwct6Dmk6sS1ruyZdxX9vlnr2NMzjvTfMR8gtgwUDJu-7hQ1j248LDkwnSXAmz8iMlYpnSnN2TmYAkGdCAb8kVzF2aRVasxnJdw3Ste1t1VLX2P0e-3d8oEva4zf1YejHFgP1Q6DLDQ0Y0QbXXJMLb_cRb_7mnLw9P-1W62z7-rJZLbeZEyWMmXRl7hEqn1dJQKWcgwp4zXNhpS-UAyi1rqoCKibrslYoBZPKWl4IoUUh5uRu6j2E4fOIcTTdcAx9OmlSB9NC5SVLrnxyuTDEGNCbQ2g_bPgxDMyJj-nMxMec-JiJT4o9TjFMH3ylL010LfYO6zagG009tP8X_AKq822R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431937481</pqid></control><display><type>article</type><title>The Hanabi challenge: A new frontier for AI research</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bard, Nolan ; Foerster, Jakob N. ; Chandar, Sarath ; Burch, Neil ; Lanctot, Marc ; Song, H. Francis ; Parisotto, Emilio ; Dumoulin, Vincent ; Moitra, Subhodeep ; Hughes, Edward ; Dunning, Iain ; Mourad, Shibl ; Larochelle, Hugo ; Bellemare, Marc G. ; Bowling, Michael</creator><creatorcontrib>Bard, Nolan ; Foerster, Jakob N. ; Chandar, Sarath ; Burch, Neil ; Lanctot, Marc ; Song, H. Francis ; Parisotto, Emilio ; Dumoulin, Vincent ; Moitra, Subhodeep ; Hughes, Edward ; Dunning, Iain ; Mourad, Shibl ; Larochelle, Hugo ; Bellemare, Marc G. ; Bowling, Michael</creatorcontrib><description>From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some variants of poker. As with their predecessors of chess, checkers, and backgammon, these game domains have driven research by providing sophisticated yet well-defined challenges for artificial intelligence practitioners. We continue this tradition by proposing the game of Hanabi as a new challenge domain with novel problems that arise from its combination of purely cooperative gameplay with two to five players and imperfect information. In particular, we argue that Hanabi elevates reasoning about the beliefs and intentions of other agents to the foreground. We believe developing novel techniques for such theory of mind reasoning will not only be crucial for success in Hanabi, but also in broader collaborative efforts, especially those with human partners. To facilitate future research, we introduce the open-source Hanabi Learning Environment, propose an experimental framework for the research community to evaluate algorithmic advances, and assess the performance of current state-of-the-art techniques.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/j.artint.2019.103216</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Agents (artificial intelligence) ; Artificial intelligence ; Challenge paper ; Checkers ; Chess ; Communication ; Cooperative ; Decision making ; Domains ; Games ; Imperfect information ; Machine learning ; Multi-agent learning ; Reasoning ; Reinforcement learning ; Theory of mind</subject><ispartof>Artificial intelligence, 2020-03, Vol.280, p.103216-19, Article 103216</ispartof><rights>2019 The Authors</rights><rights>Copyright Elsevier Science Ltd. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-6c84fe0bf4bc38e77cc0b02d243a6f57c00899bb50b16d8d7e63167aa25339353</citedby><cites>FETCH-LOGICAL-c380t-6c84fe0bf4bc38e77cc0b02d243a6f57c00899bb50b16d8d7e63167aa25339353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artint.2019.103216$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bard, Nolan</creatorcontrib><creatorcontrib>Foerster, Jakob N.</creatorcontrib><creatorcontrib>Chandar, Sarath</creatorcontrib><creatorcontrib>Burch, Neil</creatorcontrib><creatorcontrib>Lanctot, Marc</creatorcontrib><creatorcontrib>Song, H. Francis</creatorcontrib><creatorcontrib>Parisotto, Emilio</creatorcontrib><creatorcontrib>Dumoulin, Vincent</creatorcontrib><creatorcontrib>Moitra, Subhodeep</creatorcontrib><creatorcontrib>Hughes, Edward</creatorcontrib><creatorcontrib>Dunning, Iain</creatorcontrib><creatorcontrib>Mourad, Shibl</creatorcontrib><creatorcontrib>Larochelle, Hugo</creatorcontrib><creatorcontrib>Bellemare, Marc G.</creatorcontrib><creatorcontrib>Bowling, Michael</creatorcontrib><title>The Hanabi challenge: A new frontier for AI research</title><title>Artificial intelligence</title><description>From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some variants of poker. As with their predecessors of chess, checkers, and backgammon, these game domains have driven research by providing sophisticated yet well-defined challenges for artificial intelligence practitioners. We continue this tradition by proposing the game of Hanabi as a new challenge domain with novel problems that arise from its combination of purely cooperative gameplay with two to five players and imperfect information. In particular, we argue that Hanabi elevates reasoning about the beliefs and intentions of other agents to the foreground. We believe developing novel techniques for such theory of mind reasoning will not only be crucial for success in Hanabi, but also in broader collaborative efforts, especially those with human partners. To facilitate future research, we introduce the open-source Hanabi Learning Environment, propose an experimental framework for the research community to evaluate algorithmic advances, and assess the performance of current state-of-the-art techniques.</description><subject>Agents (artificial intelligence)</subject><subject>Artificial intelligence</subject><subject>Challenge paper</subject><subject>Checkers</subject><subject>Chess</subject><subject>Communication</subject><subject>Cooperative</subject><subject>Decision making</subject><subject>Domains</subject><subject>Games</subject><subject>Imperfect information</subject><subject>Machine learning</subject><subject>Multi-agent learning</subject><subject>Reasoning</subject><subject>Reinforcement learning</subject><subject>Theory of mind</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-Aw8Bz10nSZs0HoRlUXdhwct6Dmk6sS1ruyZdxX9vlnr2NMzjvTfMR8gtgwUDJu-7hQ1j248LDkwnSXAmz8iMlYpnSnN2TmYAkGdCAb8kVzF2aRVasxnJdw3Ste1t1VLX2P0e-3d8oEva4zf1YejHFgP1Q6DLDQ0Y0QbXXJMLb_cRb_7mnLw9P-1W62z7-rJZLbeZEyWMmXRl7hEqn1dJQKWcgwp4zXNhpS-UAyi1rqoCKibrslYoBZPKWl4IoUUh5uRu6j2E4fOIcTTdcAx9OmlSB9NC5SVLrnxyuTDEGNCbQ2g_bPgxDMyJj-nMxMec-JiJT4o9TjFMH3ylL010LfYO6zagG009tP8X_AKq822R</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Bard, Nolan</creator><creator>Foerster, Jakob N.</creator><creator>Chandar, Sarath</creator><creator>Burch, Neil</creator><creator>Lanctot, Marc</creator><creator>Song, H. Francis</creator><creator>Parisotto, Emilio</creator><creator>Dumoulin, Vincent</creator><creator>Moitra, Subhodeep</creator><creator>Hughes, Edward</creator><creator>Dunning, Iain</creator><creator>Mourad, Shibl</creator><creator>Larochelle, Hugo</creator><creator>Bellemare, Marc G.</creator><creator>Bowling, Michael</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202003</creationdate><title>The Hanabi challenge: A new frontier for AI research</title><author>Bard, Nolan ; Foerster, Jakob N. ; Chandar, Sarath ; Burch, Neil ; Lanctot, Marc ; Song, H. Francis ; Parisotto, Emilio ; Dumoulin, Vincent ; Moitra, Subhodeep ; Hughes, Edward ; Dunning, Iain ; Mourad, Shibl ; Larochelle, Hugo ; Bellemare, Marc G. ; Bowling, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-6c84fe0bf4bc38e77cc0b02d243a6f57c00899bb50b16d8d7e63167aa25339353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agents (artificial intelligence)</topic><topic>Artificial intelligence</topic><topic>Challenge paper</topic><topic>Checkers</topic><topic>Chess</topic><topic>Communication</topic><topic>Cooperative</topic><topic>Decision making</topic><topic>Domains</topic><topic>Games</topic><topic>Imperfect information</topic><topic>Machine learning</topic><topic>Multi-agent learning</topic><topic>Reasoning</topic><topic>Reinforcement learning</topic><topic>Theory of mind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bard, Nolan</creatorcontrib><creatorcontrib>Foerster, Jakob N.</creatorcontrib><creatorcontrib>Chandar, Sarath</creatorcontrib><creatorcontrib>Burch, Neil</creatorcontrib><creatorcontrib>Lanctot, Marc</creatorcontrib><creatorcontrib>Song, H. Francis</creatorcontrib><creatorcontrib>Parisotto, Emilio</creatorcontrib><creatorcontrib>Dumoulin, Vincent</creatorcontrib><creatorcontrib>Moitra, Subhodeep</creatorcontrib><creatorcontrib>Hughes, Edward</creatorcontrib><creatorcontrib>Dunning, Iain</creatorcontrib><creatorcontrib>Mourad, Shibl</creatorcontrib><creatorcontrib>Larochelle, Hugo</creatorcontrib><creatorcontrib>Bellemare, Marc G.</creatorcontrib><creatorcontrib>Bowling, Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bard, Nolan</au><au>Foerster, Jakob N.</au><au>Chandar, Sarath</au><au>Burch, Neil</au><au>Lanctot, Marc</au><au>Song, H. Francis</au><au>Parisotto, Emilio</au><au>Dumoulin, Vincent</au><au>Moitra, Subhodeep</au><au>Hughes, Edward</au><au>Dunning, Iain</au><au>Mourad, Shibl</au><au>Larochelle, Hugo</au><au>Bellemare, Marc G.</au><au>Bowling, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hanabi challenge: A new frontier for AI research</atitle><jtitle>Artificial intelligence</jtitle><date>2020-03</date><risdate>2020</risdate><volume>280</volume><spage>103216</spage><epage>19</epage><pages>103216-19</pages><artnum>103216</artnum><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some variants of poker. As with their predecessors of chess, checkers, and backgammon, these game domains have driven research by providing sophisticated yet well-defined challenges for artificial intelligence practitioners. We continue this tradition by proposing the game of Hanabi as a new challenge domain with novel problems that arise from its combination of purely cooperative gameplay with two to five players and imperfect information. In particular, we argue that Hanabi elevates reasoning about the beliefs and intentions of other agents to the foreground. We believe developing novel techniques for such theory of mind reasoning will not only be crucial for success in Hanabi, but also in broader collaborative efforts, especially those with human partners. To facilitate future research, we introduce the open-source Hanabi Learning Environment, propose an experimental framework for the research community to evaluate algorithmic advances, and assess the performance of current state-of-the-art techniques.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.artint.2019.103216</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-3702 |
ispartof | Artificial intelligence, 2020-03, Vol.280, p.103216-19, Article 103216 |
issn | 0004-3702 1872-7921 |
language | eng |
recordid | cdi_proquest_journals_2431937481 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Agents (artificial intelligence) Artificial intelligence Challenge paper Checkers Chess Communication Cooperative Decision making Domains Games Imperfect information Machine learning Multi-agent learning Reasoning Reinforcement learning Theory of mind |
title | The Hanabi challenge: A new frontier for AI research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hanabi%20challenge:%20A%20new%20frontier%20for%20AI%20research&rft.jtitle=Artificial%20intelligence&rft.au=Bard,%20Nolan&rft.date=2020-03&rft.volume=280&rft.spage=103216&rft.epage=19&rft.pages=103216-19&rft.artnum=103216&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/j.artint.2019.103216&rft_dat=%3Cproquest_cross%3E2431937481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431937481&rft_id=info:pmid/&rft_els_id=S0004370219300116&rfr_iscdi=true |