Physical and Mathematical Fluid Mechanics
Fluid mechanics has emerged as a basic concept for nearly every field of technology. Despite there being a well-developed mathematical theory and available commercial software codes, the computation of solutions of the governing equations of motion is still challenging, especially due to the nonline...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2020-08, Vol.12 (8), p.2199 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 2199 |
container_title | Water (Basel) |
container_volume | 12 |
creator | Scholle, Markus |
description | Fluid mechanics has emerged as a basic concept for nearly every field of technology. Despite there being a well-developed mathematical theory and available commercial software codes, the computation of solutions of the governing equations of motion is still challenging, especially due to the nonlinearity involved, and there are still open questions regarding the underlying physics of fluid flow, especially with respect to the continuum hypothesis and thermodynamic local equilibrium. The aim of this Special Issue is to reference recent advances in the field of fluid mechanics both in terms of developing sophisticated mathematical methods for finding solutions of the equations of motion, on the one hand, and on novel approaches to the physical modelling beyond the continuum hypothesis and thermodynamic local equilibrium, on the other. |
doi_str_mv | 10.3390/w12082199 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2431721632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A638414278</galeid><sourcerecordid>A638414278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d2eca1741709498ca6abfee1d8b9a976694facc552449256e8762e04b92aa4e23</originalsourceid><addsrcrecordid>eNpNUEtLAzEQDqJgqT34Dwqeetia1-ZxLMVaoaIHPYdpdtambHdrskX6702tiDOHGT6-B3yE3DI6FcLS-y_GqeHM2gsy4FSLQkrJLv_912SU0pbmkdaYkg7I5HVzTMFDM4a2Gj9Dv8Ed9D_AojmEDKHfQBt8uiFXNTQJR793SN4XD2_zZbF6eXyaz1aF55b1RcXRA9OSaWpziAcF6xqRVWZtwWqlrKzB-7LkUlpeKjRacaRybTmARC6G5O7su4_d5wFT77bdIbY50nEpmOZMiRNremZ9QIMutHXXR_B5K9wF37VYh4zPlDCSSa5NFkzOAh-7lCLWbh_DDuLRMepO7bm_9sQ3y7pelA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431721632</pqid></control><display><type>article</type><title>Physical and Mathematical Fluid Mechanics</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Scholle, Markus</creator><creatorcontrib>Scholle, Markus</creatorcontrib><description>Fluid mechanics has emerged as a basic concept for nearly every field of technology. Despite there being a well-developed mathematical theory and available commercial software codes, the computation of solutions of the governing equations of motion is still challenging, especially due to the nonlinearity involved, and there are still open questions regarding the underlying physics of fluid flow, especially with respect to the continuum hypothesis and thermodynamic local equilibrium. The aim of this Special Issue is to reference recent advances in the field of fluid mechanics both in terms of developing sophisticated mathematical methods for finding solutions of the equations of motion, on the one hand, and on novel approaches to the physical modelling beyond the continuum hypothesis and thermodynamic local equilibrium, on the other.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w12082199</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Computational fluid dynamics ; Conflicts of interest ; Equations of motion ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Hydrodynamics ; Hydrofoil boats ; Hypotheses ; Mathematical models ; Methods ; Navier-Stokes equations ; Numerical analysis ; Theory ; Vortices</subject><ispartof>Water (Basel), 2020-08, Vol.12 (8), p.2199</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-d2eca1741709498ca6abfee1d8b9a976694facc552449256e8762e04b92aa4e23</cites><orcidid>0000-0001-6945-5247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Scholle, Markus</creatorcontrib><title>Physical and Mathematical Fluid Mechanics</title><title>Water (Basel)</title><description>Fluid mechanics has emerged as a basic concept for nearly every field of technology. Despite there being a well-developed mathematical theory and available commercial software codes, the computation of solutions of the governing equations of motion is still challenging, especially due to the nonlinearity involved, and there are still open questions regarding the underlying physics of fluid flow, especially with respect to the continuum hypothesis and thermodynamic local equilibrium. The aim of this Special Issue is to reference recent advances in the field of fluid mechanics both in terms of developing sophisticated mathematical methods for finding solutions of the equations of motion, on the one hand, and on novel approaches to the physical modelling beyond the continuum hypothesis and thermodynamic local equilibrium, on the other.</description><subject>Computational fluid dynamics</subject><subject>Conflicts of interest</subject><subject>Equations of motion</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Hydrofoil boats</subject><subject>Hypotheses</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Navier-Stokes equations</subject><subject>Numerical analysis</subject><subject>Theory</subject><subject>Vortices</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUEtLAzEQDqJgqT34Dwqeetia1-ZxLMVaoaIHPYdpdtambHdrskX6702tiDOHGT6-B3yE3DI6FcLS-y_GqeHM2gsy4FSLQkrJLv_912SU0pbmkdaYkg7I5HVzTMFDM4a2Gj9Dv8Ed9D_AojmEDKHfQBt8uiFXNTQJR793SN4XD2_zZbF6eXyaz1aF55b1RcXRA9OSaWpziAcF6xqRVWZtwWqlrKzB-7LkUlpeKjRacaRybTmARC6G5O7su4_d5wFT77bdIbY50nEpmOZMiRNremZ9QIMutHXXR_B5K9wF37VYh4zPlDCSSa5NFkzOAh-7lCLWbh_DDuLRMepO7bm_9sQ3y7pelA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Scholle, Markus</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6945-5247</orcidid></search><sort><creationdate>20200801</creationdate><title>Physical and Mathematical Fluid Mechanics</title><author>Scholle, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d2eca1741709498ca6abfee1d8b9a976694facc552449256e8762e04b92aa4e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Conflicts of interest</topic><topic>Equations of motion</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Hydrofoil boats</topic><topic>Hypotheses</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Navier-Stokes equations</topic><topic>Numerical analysis</topic><topic>Theory</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholle, Markus</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholle, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical and Mathematical Fluid Mechanics</atitle><jtitle>Water (Basel)</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>12</volume><issue>8</issue><spage>2199</spage><pages>2199-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Fluid mechanics has emerged as a basic concept for nearly every field of technology. Despite there being a well-developed mathematical theory and available commercial software codes, the computation of solutions of the governing equations of motion is still challenging, especially due to the nonlinearity involved, and there are still open questions regarding the underlying physics of fluid flow, especially with respect to the continuum hypothesis and thermodynamic local equilibrium. The aim of this Special Issue is to reference recent advances in the field of fluid mechanics both in terms of developing sophisticated mathematical methods for finding solutions of the equations of motion, on the one hand, and on novel approaches to the physical modelling beyond the continuum hypothesis and thermodynamic local equilibrium, on the other.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w12082199</doi><orcidid>https://orcid.org/0000-0001-6945-5247</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2020-08, Vol.12 (8), p.2199 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_2431721632 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Computational fluid dynamics Conflicts of interest Equations of motion Fluid dynamics Fluid flow Fluid mechanics Hydrodynamics Hydrofoil boats Hypotheses Mathematical models Methods Navier-Stokes equations Numerical analysis Theory Vortices |
title | Physical and Mathematical Fluid Mechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20and%20Mathematical%20Fluid%20Mechanics&rft.jtitle=Water%20(Basel)&rft.au=Scholle,%20Markus&rft.date=2020-08-01&rft.volume=12&rft.issue=8&rft.spage=2199&rft.pages=2199-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w12082199&rft_dat=%3Cgale_proqu%3EA638414278%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431721632&rft_id=info:pmid/&rft_galeid=A638414278&rfr_iscdi=true |