Screen Overprinted Flexible Radar Absorber Composed of Planar Resistor Loaded Metamaterials

Flexible metamaterial absorber manufactured with a layer-by-layer screen-overprinting methodology has been theoretically and experimentally studied in this letter. The effective absorption of the absorber is in the X -band (8.3-10.9 GHz) and its working principle has been verified and analyzed. Bene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE antennas and wireless propagation letters 2020-08, Vol.19 (8), p.1281-1285
Hauptverfasser: Huang, Xianjun, Lin, Mingtuan, Wu, Zhuang, Cheng, Kai, Tian, Tao, Guan, Dongfang, Sun, Xiaoliang, Hu, Shanrong, Liang, Yuanlong, Liu, Jibin, Zou, Yanhong, Liu, Peiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1285
container_issue 8
container_start_page 1281
container_title IEEE antennas and wireless propagation letters
container_volume 19
creator Huang, Xianjun
Lin, Mingtuan
Wu, Zhuang
Cheng, Kai
Tian, Tao
Guan, Dongfang
Sun, Xiaoliang
Hu, Shanrong
Liang, Yuanlong
Liu, Jibin
Zou, Yanhong
Liu, Peiguo
description Flexible metamaterial absorber manufactured with a layer-by-layer screen-overprinting methodology has been theoretically and experimentally studied in this letter. The effective absorption of the absorber is in the X -band (8.3-10.9 GHz) and its working principle has been verified and analyzed. Benefiting from the elimination of the parasitic effect brought by package-free and direct-contacted planar resistors, high agreement between simulations and measurements has been achieved. The working frequency band can be easily tuned by replacing different supporting and covering layers to fit various purposes. Mechanical flexibility of the absorber enables its conformal coverage to aiming objects for radar cross-section reduction, and is experimentally confirmed on metallic cylinders with different diameters. It has been clearly demonstrated that the high-efficiency and cost-effective automatic screen-overprinting method matches perfectly for large-size flexible absorbers and their industrial applications.
doi_str_mv 10.1109/LAWP.2020.2994986
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2431704239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9094346</ieee_id><sourcerecordid>2431704239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-21068a244166d7fd43c33530bd81238bbad8f4cb028de100684d8861f8f196063</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKd_gPhS8LkzX02TxzH8gsrGVHzwIaTNDXR0zUw60f_elA2fzoXzO_dyD0LXBM8Iwequmn-sZhRTPKNKcSXFCZqQgsu8KIvydJyZyAmlxTm6iHGDMSlFwSbo87UJAH22_IawC20_gM0eOvhp6w6ytbEmZPM6-lBDyBZ-u_MxAd5lq870yVtDbOPgQ1Z5Y5PzAoPZmgFCa7p4ic5cErg66hS9P9y_LZ7yavn4vJhXeUMVG3JKsJCGck6EsKWznDWMFQzXVhLKZF0bKx1vakylBYITzK2UgjjpiBJYsCm6PezdBf-1hzjojd-HPp3UlDNSYk6ZShQ5UE3wMQZwOv27NeFXE6zHDvXYoR471McOU-bmkGkB4J9XWHHGBfsDB9Zslw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431704239</pqid></control><display><type>article</type><title>Screen Overprinted Flexible Radar Absorber Composed of Planar Resistor Loaded Metamaterials</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Xianjun ; Lin, Mingtuan ; Wu, Zhuang ; Cheng, Kai ; Tian, Tao ; Guan, Dongfang ; Sun, Xiaoliang ; Hu, Shanrong ; Liang, Yuanlong ; Liu, Jibin ; Zou, Yanhong ; Liu, Peiguo</creator><creatorcontrib>Huang, Xianjun ; Lin, Mingtuan ; Wu, Zhuang ; Cheng, Kai ; Tian, Tao ; Guan, Dongfang ; Sun, Xiaoliang ; Hu, Shanrong ; Liang, Yuanlong ; Liu, Jibin ; Zou, Yanhong ; Liu, Peiguo</creatorcontrib><description>Flexible metamaterial absorber manufactured with a layer-by-layer screen-overprinting methodology has been theoretically and experimentally studied in this letter. The effective absorption of the absorber is in the X -band (8.3-10.9 GHz) and its working principle has been verified and analyzed. Benefiting from the elimination of the parasitic effect brought by package-free and direct-contacted planar resistors, high agreement between simulations and measurements has been achieved. The working frequency band can be easily tuned by replacing different supporting and covering layers to fit various purposes. Mechanical flexibility of the absorber enables its conformal coverage to aiming objects for radar cross-section reduction, and is experimentally confirmed on metallic cylinders with different diameters. It has been clearly demonstrated that the high-efficiency and cost-effective automatic screen-overprinting method matches perfectly for large-size flexible absorbers and their industrial applications.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2020.2994986</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorbers (materials) ; Carbon ; Diameters ; Flexible absorber ; Frequencies ; Industrial applications ; Metamaterials ; printed resistor ; Radar absorbers ; Radar cross sections ; Reflection ; Resistors ; screen overprint ; Silver ; Substrates</subject><ispartof>IEEE antennas and wireless propagation letters, 2020-08, Vol.19 (8), p.1281-1285</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-21068a244166d7fd43c33530bd81238bbad8f4cb028de100684d8861f8f196063</citedby><cites>FETCH-LOGICAL-c293t-21068a244166d7fd43c33530bd81238bbad8f4cb028de100684d8861f8f196063</cites><orcidid>0000-0003-4907-8522 ; 0000-0003-3170-6404 ; 0000-0002-5522-9561 ; 0000-0001-5178-6806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9094346$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9094346$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Xianjun</creatorcontrib><creatorcontrib>Lin, Mingtuan</creatorcontrib><creatorcontrib>Wu, Zhuang</creatorcontrib><creatorcontrib>Cheng, Kai</creatorcontrib><creatorcontrib>Tian, Tao</creatorcontrib><creatorcontrib>Guan, Dongfang</creatorcontrib><creatorcontrib>Sun, Xiaoliang</creatorcontrib><creatorcontrib>Hu, Shanrong</creatorcontrib><creatorcontrib>Liang, Yuanlong</creatorcontrib><creatorcontrib>Liu, Jibin</creatorcontrib><creatorcontrib>Zou, Yanhong</creatorcontrib><creatorcontrib>Liu, Peiguo</creatorcontrib><title>Screen Overprinted Flexible Radar Absorber Composed of Planar Resistor Loaded Metamaterials</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>Flexible metamaterial absorber manufactured with a layer-by-layer screen-overprinting methodology has been theoretically and experimentally studied in this letter. The effective absorption of the absorber is in the X -band (8.3-10.9 GHz) and its working principle has been verified and analyzed. Benefiting from the elimination of the parasitic effect brought by package-free and direct-contacted planar resistors, high agreement between simulations and measurements has been achieved. The working frequency band can be easily tuned by replacing different supporting and covering layers to fit various purposes. Mechanical flexibility of the absorber enables its conformal coverage to aiming objects for radar cross-section reduction, and is experimentally confirmed on metallic cylinders with different diameters. It has been clearly demonstrated that the high-efficiency and cost-effective automatic screen-overprinting method matches perfectly for large-size flexible absorbers and their industrial applications.</description><subject>Absorbers (materials)</subject><subject>Carbon</subject><subject>Diameters</subject><subject>Flexible absorber</subject><subject>Frequencies</subject><subject>Industrial applications</subject><subject>Metamaterials</subject><subject>printed resistor</subject><subject>Radar absorbers</subject><subject>Radar cross sections</subject><subject>Reflection</subject><subject>Resistors</subject><subject>screen overprint</subject><subject>Silver</subject><subject>Substrates</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOKd_gPhS8LkzX02TxzH8gsrGVHzwIaTNDXR0zUw60f_elA2fzoXzO_dyD0LXBM8Iwequmn-sZhRTPKNKcSXFCZqQgsu8KIvydJyZyAmlxTm6iHGDMSlFwSbo87UJAH22_IawC20_gM0eOvhp6w6ytbEmZPM6-lBDyBZ-u_MxAd5lq870yVtDbOPgQ1Z5Y5PzAoPZmgFCa7p4ic5cErg66hS9P9y_LZ7yavn4vJhXeUMVG3JKsJCGck6EsKWznDWMFQzXVhLKZF0bKx1vakylBYITzK2UgjjpiBJYsCm6PezdBf-1hzjojd-HPp3UlDNSYk6ZShQ5UE3wMQZwOv27NeFXE6zHDvXYoR471McOU-bmkGkB4J9XWHHGBfsDB9Zslw</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Huang, Xianjun</creator><creator>Lin, Mingtuan</creator><creator>Wu, Zhuang</creator><creator>Cheng, Kai</creator><creator>Tian, Tao</creator><creator>Guan, Dongfang</creator><creator>Sun, Xiaoliang</creator><creator>Hu, Shanrong</creator><creator>Liang, Yuanlong</creator><creator>Liu, Jibin</creator><creator>Zou, Yanhong</creator><creator>Liu, Peiguo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4907-8522</orcidid><orcidid>https://orcid.org/0000-0003-3170-6404</orcidid><orcidid>https://orcid.org/0000-0002-5522-9561</orcidid><orcidid>https://orcid.org/0000-0001-5178-6806</orcidid></search><sort><creationdate>20200801</creationdate><title>Screen Overprinted Flexible Radar Absorber Composed of Planar Resistor Loaded Metamaterials</title><author>Huang, Xianjun ; Lin, Mingtuan ; Wu, Zhuang ; Cheng, Kai ; Tian, Tao ; Guan, Dongfang ; Sun, Xiaoliang ; Hu, Shanrong ; Liang, Yuanlong ; Liu, Jibin ; Zou, Yanhong ; Liu, Peiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-21068a244166d7fd43c33530bd81238bbad8f4cb028de100684d8861f8f196063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorbers (materials)</topic><topic>Carbon</topic><topic>Diameters</topic><topic>Flexible absorber</topic><topic>Frequencies</topic><topic>Industrial applications</topic><topic>Metamaterials</topic><topic>printed resistor</topic><topic>Radar absorbers</topic><topic>Radar cross sections</topic><topic>Reflection</topic><topic>Resistors</topic><topic>screen overprint</topic><topic>Silver</topic><topic>Substrates</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xianjun</creatorcontrib><creatorcontrib>Lin, Mingtuan</creatorcontrib><creatorcontrib>Wu, Zhuang</creatorcontrib><creatorcontrib>Cheng, Kai</creatorcontrib><creatorcontrib>Tian, Tao</creatorcontrib><creatorcontrib>Guan, Dongfang</creatorcontrib><creatorcontrib>Sun, Xiaoliang</creatorcontrib><creatorcontrib>Hu, Shanrong</creatorcontrib><creatorcontrib>Liang, Yuanlong</creatorcontrib><creatorcontrib>Liu, Jibin</creatorcontrib><creatorcontrib>Zou, Yanhong</creatorcontrib><creatorcontrib>Liu, Peiguo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Xianjun</au><au>Lin, Mingtuan</au><au>Wu, Zhuang</au><au>Cheng, Kai</au><au>Tian, Tao</au><au>Guan, Dongfang</au><au>Sun, Xiaoliang</au><au>Hu, Shanrong</au><au>Liang, Yuanlong</au><au>Liu, Jibin</au><au>Zou, Yanhong</au><au>Liu, Peiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Screen Overprinted Flexible Radar Absorber Composed of Planar Resistor Loaded Metamaterials</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>19</volume><issue>8</issue><spage>1281</spage><epage>1285</epage><pages>1281-1285</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>Flexible metamaterial absorber manufactured with a layer-by-layer screen-overprinting methodology has been theoretically and experimentally studied in this letter. The effective absorption of the absorber is in the X -band (8.3-10.9 GHz) and its working principle has been verified and analyzed. Benefiting from the elimination of the parasitic effect brought by package-free and direct-contacted planar resistors, high agreement between simulations and measurements has been achieved. The working frequency band can be easily tuned by replacing different supporting and covering layers to fit various purposes. Mechanical flexibility of the absorber enables its conformal coverage to aiming objects for radar cross-section reduction, and is experimentally confirmed on metallic cylinders with different diameters. It has been clearly demonstrated that the high-efficiency and cost-effective automatic screen-overprinting method matches perfectly for large-size flexible absorbers and their industrial applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2020.2994986</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4907-8522</orcidid><orcidid>https://orcid.org/0000-0003-3170-6404</orcidid><orcidid>https://orcid.org/0000-0002-5522-9561</orcidid><orcidid>https://orcid.org/0000-0001-5178-6806</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1225
ispartof IEEE antennas and wireless propagation letters, 2020-08, Vol.19 (8), p.1281-1285
issn 1536-1225
1548-5757
language eng
recordid cdi_proquest_journals_2431704239
source IEEE Electronic Library (IEL)
subjects Absorbers (materials)
Carbon
Diameters
Flexible absorber
Frequencies
Industrial applications
Metamaterials
printed resistor
Radar absorbers
Radar cross sections
Reflection
Resistors
screen overprint
Silver
Substrates
title Screen Overprinted Flexible Radar Absorber Composed of Planar Resistor Loaded Metamaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Screen%20Overprinted%20Flexible%20Radar%20Absorber%20Composed%20of%20Planar%20Resistor%20Loaded%20Metamaterials&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Huang,%20Xianjun&rft.date=2020-08-01&rft.volume=19&rft.issue=8&rft.spage=1281&rft.epage=1285&rft.pages=1281-1285&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2020.2994986&rft_dat=%3Cproquest_RIE%3E2431704239%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431704239&rft_id=info:pmid/&rft_ieee_id=9094346&rfr_iscdi=true