A Semismooth Newton Algorithm for High-Dimensional Nonconvex Sparse Learning

The smoothly clipped absolute deviation (SCAD) and the minimax concave penalty (MCP)-penalized regression models are two important and widely used nonconvex sparse learning tools that can handle variable selection and parameter estimation simultaneously and thus have potential applications in variou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2020-08, Vol.31 (8), p.2993-3006
Hauptverfasser: Shi, Yueyong, Huang, Jian, Jiao, Yuling, Yang, Qinglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3006
container_issue 8
container_start_page 2993
container_title IEEE transaction on neural networks and learning systems
container_volume 31
creator Shi, Yueyong
Huang, Jian
Jiao, Yuling
Yang, Qinglong
description The smoothly clipped absolute deviation (SCAD) and the minimax concave penalty (MCP)-penalized regression models are two important and widely used nonconvex sparse learning tools that can handle variable selection and parameter estimation simultaneously and thus have potential applications in various fields, such as mining biological data in high-throughput biomedical studies. Theoretically, these two models enjoy the oracle property even in the high-dimensional settings, where the number of predictors p may be much larger than the number of observations n . However, numerically, it is quite challenging to develop fast and stable algorithms due to their nonconvexity and nonsmoothness. In this article, we develop a fast algorithm for SCAD- and MCP-penalized learning problems. First, we show that the global minimizers of both models are roots of the nonsmooth equations. Then, a semismooth Newton (SSN) algorithm is employed to solve the equations. We prove that the SSN algorithm converges locally and superlinearly to the Karush-Kuhn-Tucker (KKT) points. The computational complexity analysis shows that the cost of the SSN algorithm per iteration is O(np) . Combined with the warm-start technique, the SSN algorithm can be very efficient and accurate. Simulation studies and a real data example suggest that our SSN algorithm, with comparable solution accuracy with the coordinate descent (CD) and the difference of convex (DC) proximal Newton algorithms, is more computationally efficient.
doi_str_mv 10.1109/TNNLS.2019.2935001
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2431702076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8835076</ieee_id><sourcerecordid>2293970301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-7af642e8dc8185cd6838e7773d6ee5656b28542afe3a05dfe2bc8421844e60e83</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRSMEElXpD8AmEhs2KX4ktrOsyqNIUVi0SOwsN5m0rhK72CmPv8elVRfMZkaac0eaE0XXGI0xRvn9oiyL-ZggnI9JTjOE8Fk0IJiRhFAhzk8zf7-MRt5vUCiGMpbmg6iYxHPotO-s7ddxCV-9NfGkXVmn-3UXN9bFM71aJw-6A-O1NaqNS2sqaz7hO55vlfMQF6Cc0WZ1FV00qvUwOvZh9Pb0uJjOkuL1-WU6KZKKEtEnXDUsJSDqSmCRVTUTVADnnNYMIGMZWxKRpUQ1QBXK6gbIshIpwSJNgSEQdBjdHe5unf3Yge9l-KCCtlUG7M5LEjTkHFGEA3r7D93YnQtfBCqlmCOCOAsUOVCVs947aOTW6U65H4mR3DuWf47l3rE8Og6hm0NIA8ApIETYhpO_RbB26Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431702076</pqid></control><display><type>article</type><title>A Semismooth Newton Algorithm for High-Dimensional Nonconvex Sparse Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Shi, Yueyong ; Huang, Jian ; Jiao, Yuling ; Yang, Qinglong</creator><creatorcontrib>Shi, Yueyong ; Huang, Jian ; Jiao, Yuling ; Yang, Qinglong</creatorcontrib><description><![CDATA[The smoothly clipped absolute deviation (SCAD) and the minimax concave penalty (MCP)-penalized regression models are two important and widely used nonconvex sparse learning tools that can handle variable selection and parameter estimation simultaneously and thus have potential applications in various fields, such as mining biological data in high-throughput biomedical studies. Theoretically, these two models enjoy the oracle property even in the high-dimensional settings, where the number of predictors <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> may be much larger than the number of observations <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>. However, numerically, it is quite challenging to develop fast and stable algorithms due to their nonconvexity and nonsmoothness. In this article, we develop a fast algorithm for SCAD- and MCP-penalized learning problems. First, we show that the global minimizers of both models are roots of the nonsmooth equations. Then, a semismooth Newton (SSN) algorithm is employed to solve the equations. We prove that the SSN algorithm converges locally and superlinearly to the Karush-Kuhn-Tucker (KKT) points. The computational complexity analysis shows that the cost of the SSN algorithm per iteration is <inline-formula> <tex-math notation="LaTeX">O(np) </tex-math></inline-formula>. Combined with the warm-start technique, the SSN algorithm can be very efficient and accurate. Simulation studies and a real data example suggest that our SSN algorithm, with comparable solution accuracy with the coordinate descent (CD) and the difference of convex (DC) proximal Newton algorithms, is more computationally efficient.]]></description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2019.2935001</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Biological system modeling ; Biomedical data ; Computer applications ; Computer simulation ; Convergence ; Cost analysis ; Formulas (mathematics) ; Iterative methods ; Learning ; Machine learning ; Mathematical model ; minimax concave penalty (MCP) ; Minimax technique ; Minimization ; Parameter estimation ; Regression analysis ; Regression models ; semismooth newton (SSN) ; Signal processing algorithms ; smoothly clipped absolute deviation (SCAD) ; Tuning ; warm start</subject><ispartof>IEEE transaction on neural networks and learning systems, 2020-08, Vol.31 (8), p.2993-3006</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-7af642e8dc8185cd6838e7773d6ee5656b28542afe3a05dfe2bc8421844e60e83</citedby><cites>FETCH-LOGICAL-c328t-7af642e8dc8185cd6838e7773d6ee5656b28542afe3a05dfe2bc8421844e60e83</cites><orcidid>0000-0001-7419-8337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8835076$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8835076$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shi, Yueyong</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><creatorcontrib>Jiao, Yuling</creatorcontrib><creatorcontrib>Yang, Qinglong</creatorcontrib><title>A Semismooth Newton Algorithm for High-Dimensional Nonconvex Sparse Learning</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><description><![CDATA[The smoothly clipped absolute deviation (SCAD) and the minimax concave penalty (MCP)-penalized regression models are two important and widely used nonconvex sparse learning tools that can handle variable selection and parameter estimation simultaneously and thus have potential applications in various fields, such as mining biological data in high-throughput biomedical studies. Theoretically, these two models enjoy the oracle property even in the high-dimensional settings, where the number of predictors <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> may be much larger than the number of observations <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>. However, numerically, it is quite challenging to develop fast and stable algorithms due to their nonconvexity and nonsmoothness. In this article, we develop a fast algorithm for SCAD- and MCP-penalized learning problems. First, we show that the global minimizers of both models are roots of the nonsmooth equations. Then, a semismooth Newton (SSN) algorithm is employed to solve the equations. We prove that the SSN algorithm converges locally and superlinearly to the Karush-Kuhn-Tucker (KKT) points. The computational complexity analysis shows that the cost of the SSN algorithm per iteration is <inline-formula> <tex-math notation="LaTeX">O(np) </tex-math></inline-formula>. Combined with the warm-start technique, the SSN algorithm can be very efficient and accurate. Simulation studies and a real data example suggest that our SSN algorithm, with comparable solution accuracy with the coordinate descent (CD) and the difference of convex (DC) proximal Newton algorithms, is more computationally efficient.]]></description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Biological system modeling</subject><subject>Biomedical data</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Cost analysis</subject><subject>Formulas (mathematics)</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Mathematical model</subject><subject>minimax concave penalty (MCP)</subject><subject>Minimax technique</subject><subject>Minimization</subject><subject>Parameter estimation</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>semismooth newton (SSN)</subject><subject>Signal processing algorithms</subject><subject>smoothly clipped absolute deviation (SCAD)</subject><subject>Tuning</subject><subject>warm start</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRSMEElXpD8AmEhs2KX4ktrOsyqNIUVi0SOwsN5m0rhK72CmPv8elVRfMZkaac0eaE0XXGI0xRvn9oiyL-ZggnI9JTjOE8Fk0IJiRhFAhzk8zf7-MRt5vUCiGMpbmg6iYxHPotO-s7ddxCV-9NfGkXVmn-3UXN9bFM71aJw-6A-O1NaqNS2sqaz7hO55vlfMQF6Cc0WZ1FV00qvUwOvZh9Pb0uJjOkuL1-WU6KZKKEtEnXDUsJSDqSmCRVTUTVADnnNYMIGMZWxKRpUQ1QBXK6gbIshIpwSJNgSEQdBjdHe5unf3Yge9l-KCCtlUG7M5LEjTkHFGEA3r7D93YnQtfBCqlmCOCOAsUOVCVs947aOTW6U65H4mR3DuWf47l3rE8Og6hm0NIA8ApIETYhpO_RbB26Q</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Shi, Yueyong</creator><creator>Huang, Jian</creator><creator>Jiao, Yuling</creator><creator>Yang, Qinglong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7419-8337</orcidid></search><sort><creationdate>20200801</creationdate><title>A Semismooth Newton Algorithm for High-Dimensional Nonconvex Sparse Learning</title><author>Shi, Yueyong ; Huang, Jian ; Jiao, Yuling ; Yang, Qinglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-7af642e8dc8185cd6838e7773d6ee5656b28542afe3a05dfe2bc8421844e60e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Biological system modeling</topic><topic>Biomedical data</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Cost analysis</topic><topic>Formulas (mathematics)</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Mathematical model</topic><topic>minimax concave penalty (MCP)</topic><topic>Minimax technique</topic><topic>Minimization</topic><topic>Parameter estimation</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>semismooth newton (SSN)</topic><topic>Signal processing algorithms</topic><topic>smoothly clipped absolute deviation (SCAD)</topic><topic>Tuning</topic><topic>warm start</topic><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yueyong</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><creatorcontrib>Jiao, Yuling</creatorcontrib><creatorcontrib>Yang, Qinglong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi, Yueyong</au><au>Huang, Jian</au><au>Jiao, Yuling</au><au>Yang, Qinglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Semismooth Newton Algorithm for High-Dimensional Nonconvex Sparse Learning</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>31</volume><issue>8</issue><spage>2993</spage><epage>3006</epage><pages>2993-3006</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract><![CDATA[The smoothly clipped absolute deviation (SCAD) and the minimax concave penalty (MCP)-penalized regression models are two important and widely used nonconvex sparse learning tools that can handle variable selection and parameter estimation simultaneously and thus have potential applications in various fields, such as mining biological data in high-throughput biomedical studies. Theoretically, these two models enjoy the oracle property even in the high-dimensional settings, where the number of predictors <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> may be much larger than the number of observations <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>. However, numerically, it is quite challenging to develop fast and stable algorithms due to their nonconvexity and nonsmoothness. In this article, we develop a fast algorithm for SCAD- and MCP-penalized learning problems. First, we show that the global minimizers of both models are roots of the nonsmooth equations. Then, a semismooth Newton (SSN) algorithm is employed to solve the equations. We prove that the SSN algorithm converges locally and superlinearly to the Karush-Kuhn-Tucker (KKT) points. The computational complexity analysis shows that the cost of the SSN algorithm per iteration is <inline-formula> <tex-math notation="LaTeX">O(np) </tex-math></inline-formula>. Combined with the warm-start technique, the SSN algorithm can be very efficient and accurate. Simulation studies and a real data example suggest that our SSN algorithm, with comparable solution accuracy with the coordinate descent (CD) and the difference of convex (DC) proximal Newton algorithms, is more computationally efficient.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TNNLS.2019.2935001</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7419-8337</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2020-08, Vol.31 (8), p.2993-3006
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_journals_2431702076
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation algorithms
Biological system modeling
Biomedical data
Computer applications
Computer simulation
Convergence
Cost analysis
Formulas (mathematics)
Iterative methods
Learning
Machine learning
Mathematical model
minimax concave penalty (MCP)
Minimax technique
Minimization
Parameter estimation
Regression analysis
Regression models
semismooth newton (SSN)
Signal processing algorithms
smoothly clipped absolute deviation (SCAD)
Tuning
warm start
title A Semismooth Newton Algorithm for High-Dimensional Nonconvex Sparse Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Semismooth%20Newton%20Algorithm%20for%20High-Dimensional%20Nonconvex%20Sparse%20Learning&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Shi,%20Yueyong&rft.date=2020-08-01&rft.volume=31&rft.issue=8&rft.spage=2993&rft.epage=3006&rft.pages=2993-3006&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2019.2935001&rft_dat=%3Cproquest_RIE%3E2293970301%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431702076&rft_id=info:pmid/&rft_ieee_id=8835076&rfr_iscdi=true