Mining Spatial-Temporal Similarity for Visual Tracking
Correlation filter (CF) is a critical technique to improve accuracy and speed in the field of visual object tracking. Despite being studied extensively, most existing CF methods suffer from failing to make the most of the inherent spatial-temporal prior of videos. To address this limitation, as cons...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2020-01, Vol.29, p.8107-8119 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8119 |
---|---|
container_issue | |
container_start_page | 8107 |
container_title | IEEE transactions on image processing |
container_volume | 29 |
creator | Zhang, Yu Gao, Xingyu Chen, Zhenyu Zhong, Huicai Xie, Hongtao Yan, Chenggang |
description | Correlation filter (CF) is a critical technique to improve accuracy and speed in the field of visual object tracking. Despite being studied extensively, most existing CF methods suffer from failing to make the most of the inherent spatial-temporal prior of videos. To address this limitation, as consecutive frames are eminently resemble in most videos, we investigate a novel scheme to predict targets' future state by exploiting previous observations. Specifically, in this paper, we propose a prediction based CF tracking framework by learning the spatial-temporal similarity of consecutive frames for sample managing, template regularization, and training response pre-weighting. We model the learning problem theoretically as a novel objective and provide effective optimization algorithms to solve the learning task. In addition, we implement two CF trackers with different features. Extensive experiments are conducted on three popular benchmarks to validate our scheme. The encouraging results demonstrate that the proposed scheme can significantly boost the accuracy of CF tracking, and the two trackers achieve competitive performances against state-of-the-art trackers. We finally present a comprehensive analysis on the efficacy of our proposed method and the efficiency of our trackers to facilitate real-world visual tracking applications. |
doi_str_mv | 10.1109/TIP.2020.2981813 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2431701449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9107463</ieee_id><sourcerecordid>2430376200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-f7c32cb47839963ab86c7383933e3bce16878fe2ce1220c03622ead679e03ab13</originalsourceid><addsrcrecordid>eNpdkEtLAzEQgIMotlbvgiALXrxsnWTSZHOU4qNQUWj1umTTrKTuy6R76L83pdWDp0xmvhlmPkIuKYwpBXW3nL2NGTAYM5XRjOIRGVLFaQrA2XGMYSJTSbkakLMQ1gCUT6g4JQNkkguGckjEi2tc85ksOr1xukqXtu5ar6tk4WpXae8226RsffLhQh-zS6_NV-TPyUmpq2AvDu-IvD8-LKfP6fz1aTa9n6cGudykpTTITMFlhkoJ1EUmjMT4QbRYGEtFJrPSshgxBgZQMGb1SkhlIdIUR-R2P7fz7XdvwyavXTC2qnRj2z7kjCOgFAwgojf_0HXb-yZut6OojMdzFSnYU8a3IXhb5p13tfbbnEK-c5pHp_nOaX5wGluuD4P7orarv4ZfiRG42gPOWvtXVhRiHfEH9YB4AQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431701449</pqid></control><display><type>article</type><title>Mining Spatial-Temporal Similarity for Visual Tracking</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Yu ; Gao, Xingyu ; Chen, Zhenyu ; Zhong, Huicai ; Xie, Hongtao ; Yan, Chenggang</creator><creatorcontrib>Zhang, Yu ; Gao, Xingyu ; Chen, Zhenyu ; Zhong, Huicai ; Xie, Hongtao ; Yan, Chenggang</creatorcontrib><description>Correlation filter (CF) is a critical technique to improve accuracy and speed in the field of visual object tracking. Despite being studied extensively, most existing CF methods suffer from failing to make the most of the inherent spatial-temporal prior of videos. To address this limitation, as consecutive frames are eminently resemble in most videos, we investigate a novel scheme to predict targets' future state by exploiting previous observations. Specifically, in this paper, we propose a prediction based CF tracking framework by learning the spatial-temporal similarity of consecutive frames for sample managing, template regularization, and training response pre-weighting. We model the learning problem theoretically as a novel objective and provide effective optimization algorithms to solve the learning task. In addition, we implement two CF trackers with different features. Extensive experiments are conducted on three popular benchmarks to validate our scheme. The encouraging results demonstrate that the proposed scheme can significantly boost the accuracy of CF tracking, and the two trackers achieve competitive performances against state-of-the-art trackers. We finally present a comprehensive analysis on the efficacy of our proposed method and the efficiency of our trackers to facilitate real-world visual tracking applications.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2020.2981813</identifier><identifier>PMID: 32746237</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Ammonia ; Cathodes ; Cognitive tasks ; correlation filter ; Fuels ; Hydrogen ; Liquids ; Machine learning ; Marine vehicles ; Optical tracking ; Optimization ; Propulsion ; Regularization ; Similarity ; Spatial-temporal similarity ; Visual fields ; visual object tracking</subject><ispartof>IEEE transactions on image processing, 2020-01, Vol.29, p.8107-8119</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-f7c32cb47839963ab86c7383933e3bce16878fe2ce1220c03622ead679e03ab13</citedby><cites>FETCH-LOGICAL-c347t-f7c32cb47839963ab86c7383933e3bce16878fe2ce1220c03622ead679e03ab13</cites><orcidid>0000-0002-4660-8092 ; 0000-0002-9037-5265 ; 0000-0002-6249-5315 ; 0000-0003-1204-0512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9107463$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27925,27926,54759</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9107463$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32746237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Gao, Xingyu</creatorcontrib><creatorcontrib>Chen, Zhenyu</creatorcontrib><creatorcontrib>Zhong, Huicai</creatorcontrib><creatorcontrib>Xie, Hongtao</creatorcontrib><creatorcontrib>Yan, Chenggang</creatorcontrib><title>Mining Spatial-Temporal Similarity for Visual Tracking</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Correlation filter (CF) is a critical technique to improve accuracy and speed in the field of visual object tracking. Despite being studied extensively, most existing CF methods suffer from failing to make the most of the inherent spatial-temporal prior of videos. To address this limitation, as consecutive frames are eminently resemble in most videos, we investigate a novel scheme to predict targets' future state by exploiting previous observations. Specifically, in this paper, we propose a prediction based CF tracking framework by learning the spatial-temporal similarity of consecutive frames for sample managing, template regularization, and training response pre-weighting. We model the learning problem theoretically as a novel objective and provide effective optimization algorithms to solve the learning task. In addition, we implement two CF trackers with different features. Extensive experiments are conducted on three popular benchmarks to validate our scheme. The encouraging results demonstrate that the proposed scheme can significantly boost the accuracy of CF tracking, and the two trackers achieve competitive performances against state-of-the-art trackers. We finally present a comprehensive analysis on the efficacy of our proposed method and the efficiency of our trackers to facilitate real-world visual tracking applications.</description><subject>Algorithms</subject><subject>Ammonia</subject><subject>Cathodes</subject><subject>Cognitive tasks</subject><subject>correlation filter</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Liquids</subject><subject>Machine learning</subject><subject>Marine vehicles</subject><subject>Optical tracking</subject><subject>Optimization</subject><subject>Propulsion</subject><subject>Regularization</subject><subject>Similarity</subject><subject>Spatial-temporal similarity</subject><subject>Visual fields</subject><subject>visual object tracking</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEQgIMotlbvgiALXrxsnWTSZHOU4qNQUWj1umTTrKTuy6R76L83pdWDp0xmvhlmPkIuKYwpBXW3nL2NGTAYM5XRjOIRGVLFaQrA2XGMYSJTSbkakLMQ1gCUT6g4JQNkkguGckjEi2tc85ksOr1xukqXtu5ar6tk4WpXae8226RsffLhQh-zS6_NV-TPyUmpq2AvDu-IvD8-LKfP6fz1aTa9n6cGudykpTTITMFlhkoJ1EUmjMT4QbRYGEtFJrPSshgxBgZQMGb1SkhlIdIUR-R2P7fz7XdvwyavXTC2qnRj2z7kjCOgFAwgojf_0HXb-yZut6OojMdzFSnYU8a3IXhb5p13tfbbnEK-c5pHp_nOaX5wGluuD4P7orarv4ZfiRG42gPOWvtXVhRiHfEH9YB4AQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhang, Yu</creator><creator>Gao, Xingyu</creator><creator>Chen, Zhenyu</creator><creator>Zhong, Huicai</creator><creator>Xie, Hongtao</creator><creator>Yan, Chenggang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4660-8092</orcidid><orcidid>https://orcid.org/0000-0002-9037-5265</orcidid><orcidid>https://orcid.org/0000-0002-6249-5315</orcidid><orcidid>https://orcid.org/0000-0003-1204-0512</orcidid></search><sort><creationdate>20200101</creationdate><title>Mining Spatial-Temporal Similarity for Visual Tracking</title><author>Zhang, Yu ; Gao, Xingyu ; Chen, Zhenyu ; Zhong, Huicai ; Xie, Hongtao ; Yan, Chenggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-f7c32cb47839963ab86c7383933e3bce16878fe2ce1220c03622ead679e03ab13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Ammonia</topic><topic>Cathodes</topic><topic>Cognitive tasks</topic><topic>correlation filter</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Liquids</topic><topic>Machine learning</topic><topic>Marine vehicles</topic><topic>Optical tracking</topic><topic>Optimization</topic><topic>Propulsion</topic><topic>Regularization</topic><topic>Similarity</topic><topic>Spatial-temporal similarity</topic><topic>Visual fields</topic><topic>visual object tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Gao, Xingyu</creatorcontrib><creatorcontrib>Chen, Zhenyu</creatorcontrib><creatorcontrib>Zhong, Huicai</creatorcontrib><creatorcontrib>Xie, Hongtao</creatorcontrib><creatorcontrib>Yan, Chenggang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Yu</au><au>Gao, Xingyu</au><au>Chen, Zhenyu</au><au>Zhong, Huicai</au><au>Xie, Hongtao</au><au>Yan, Chenggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mining Spatial-Temporal Similarity for Visual Tracking</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>29</volume><spage>8107</spage><epage>8119</epage><pages>8107-8119</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Correlation filter (CF) is a critical technique to improve accuracy and speed in the field of visual object tracking. Despite being studied extensively, most existing CF methods suffer from failing to make the most of the inherent spatial-temporal prior of videos. To address this limitation, as consecutive frames are eminently resemble in most videos, we investigate a novel scheme to predict targets' future state by exploiting previous observations. Specifically, in this paper, we propose a prediction based CF tracking framework by learning the spatial-temporal similarity of consecutive frames for sample managing, template regularization, and training response pre-weighting. We model the learning problem theoretically as a novel objective and provide effective optimization algorithms to solve the learning task. In addition, we implement two CF trackers with different features. Extensive experiments are conducted on three popular benchmarks to validate our scheme. The encouraging results demonstrate that the proposed scheme can significantly boost the accuracy of CF tracking, and the two trackers achieve competitive performances against state-of-the-art trackers. We finally present a comprehensive analysis on the efficacy of our proposed method and the efficiency of our trackers to facilitate real-world visual tracking applications.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32746237</pmid><doi>10.1109/TIP.2020.2981813</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4660-8092</orcidid><orcidid>https://orcid.org/0000-0002-9037-5265</orcidid><orcidid>https://orcid.org/0000-0002-6249-5315</orcidid><orcidid>https://orcid.org/0000-0003-1204-0512</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2020-01, Vol.29, p.8107-8119 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_journals_2431701449 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Ammonia Cathodes Cognitive tasks correlation filter Fuels Hydrogen Liquids Machine learning Marine vehicles Optical tracking Optimization Propulsion Regularization Similarity Spatial-temporal similarity Visual fields visual object tracking |
title | Mining Spatial-Temporal Similarity for Visual Tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mining%20Spatial-Temporal%20Similarity%20for%20Visual%20Tracking&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zhang,%20Yu&rft.date=2020-01-01&rft.volume=29&rft.spage=8107&rft.epage=8119&rft.pages=8107-8119&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2020.2981813&rft_dat=%3Cproquest_RIE%3E2430376200%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431701449&rft_id=info:pmid/32746237&rft_ieee_id=9107463&rfr_iscdi=true |