Defining Image Memorability Using the Visual Memory Schema
Memorability of an image is a characteristic determined by the human observers' ability to remember images they have seen. Yet recent work on image memorability defines it as an intrinsic property that can be obtained independent of the observer. The current study aims to enhance our understand...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2020-09, Vol.42 (9), p.2165-2178 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2178 |
---|---|
container_issue | 9 |
container_start_page | 2165 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 42 |
creator | Akagunduz, Erdem Bors, Adrian G. Evans, Karla K. |
description | Memorability of an image is a characteristic determined by the human observers' ability to remember images they have seen. Yet recent work on image memorability defines it as an intrinsic property that can be obtained independent of the observer. The current study aims to enhance our understanding and prediction of image memorability, improving upon existing approaches by incorporating the properties of cumulative human annotations. We propose a new concept called the Visual Memory Schema (VMS) referring to an organization of image components human observers share when encoding and recognizing images. The concept of VMS is operationalised by asking human observers to define memorable regions of images they were asked to remember during an episodic memory test. We then statistically assess the consistency of VMSs across observers for either correctly or incorrectly recognised images. The associations of the VMSs with eye fixations and saliency are analysed separately as well. Lastly, we adapt various deep learning architectures for the reconstruction and prediction of memorable regions in images and analyse the results when using transfer learning at the outputs of different convolutional network layers. |
doi_str_mv | 10.1109/TPAMI.2019.2914392 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2431701371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8704932</ieee_id><sourcerecordid>2431701371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-e12e4996446dd6ecbee6a98ba772a130a03f7bd29c073dfbeffb278274ad21a73</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRtFb_gIIEvHhJ3ZnZZrPeSv0qtCjYel02yUQjSaPZ5tB_b2qrB09zeJ_3ZXiEOAM5AJDmev48mk0GKMEM0IAig3uiB4ZMSEMy-6InIcIwjjE-Esfef0gJaijpUBwRyGGkDPTEzS3nxbJYvgWTyr1xMOOqblxSlMVqHSz8Jli9c_Ba-NaV23QdvKTvXLkTcZC70vPp7vbF4v5uPn4Mp08Pk_FoGqZKqVXIgKyMiZSKsiziNGGOnIkTpzU6IOkk5TrJ0KRSU5YnnOcJ6hi1chmC09QXV9vdz6b-atmvbFX4lMvSLbluvUUkBEIVUYde_kM_6rZZdt9ZVARaAmnoKNxSaVN733BuP5uics3agrQbs_bHrN2YtTuzXeliN90mFWd_lV-VHXC-BQpm_otjLZUhpG-sb3tV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431701371</pqid></control><display><type>article</type><title>Defining Image Memorability Using the Visual Memory Schema</title><source>IEEE Electronic Library (IEL)</source><creator>Akagunduz, Erdem ; Bors, Adrian G. ; Evans, Karla K.</creator><creatorcontrib>Akagunduz, Erdem ; Bors, Adrian G. ; Evans, Karla K.</creatorcontrib><description>Memorability of an image is a characteristic determined by the human observers' ability to remember images they have seen. Yet recent work on image memorability defines it as an intrinsic property that can be obtained independent of the observer. The current study aims to enhance our understanding and prediction of image memorability, improving upon existing approaches by incorporating the properties of cumulative human annotations. We propose a new concept called the Visual Memory Schema (VMS) referring to an organization of image components human observers share when encoding and recognizing images. The concept of VMS is operationalised by asking human observers to define memorable regions of images they were asked to remember during an episodic memory test. We then statistically assess the consistency of VMSs across observers for either correctly or incorrectly recognised images. The associations of the VMSs with eye fixations and saliency are analysed separately as well. Lastly, we adapt various deep learning architectures for the reconstruction and prediction of memorable regions in images and analyse the results when using transfer learning at the outputs of different convolutional network layers.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2019.2914392</identifier><identifier>PMID: 31056491</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Annotations ; Computer vision ; deep features ; Human performance ; Image enhancement ; Image memorability ; Image recognition ; Machine learning ; memory experiments ; Object recognition ; Observers ; Organizations ; Psychology ; Semantics ; visual memory schema ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2020-09, Vol.42 (9), p.2165-2178</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-e12e4996446dd6ecbee6a98ba772a130a03f7bd29c073dfbeffb278274ad21a73</citedby><cites>FETCH-LOGICAL-c444t-e12e4996446dd6ecbee6a98ba772a130a03f7bd29c073dfbeffb278274ad21a73</cites><orcidid>0000-0002-0792-7306 ; 0000-0002-8440-1711 ; 0000-0001-7838-0021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8704932$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8704932$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31056491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akagunduz, Erdem</creatorcontrib><creatorcontrib>Bors, Adrian G.</creatorcontrib><creatorcontrib>Evans, Karla K.</creatorcontrib><title>Defining Image Memorability Using the Visual Memory Schema</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Memorability of an image is a characteristic determined by the human observers' ability to remember images they have seen. Yet recent work on image memorability defines it as an intrinsic property that can be obtained independent of the observer. The current study aims to enhance our understanding and prediction of image memorability, improving upon existing approaches by incorporating the properties of cumulative human annotations. We propose a new concept called the Visual Memory Schema (VMS) referring to an organization of image components human observers share when encoding and recognizing images. The concept of VMS is operationalised by asking human observers to define memorable regions of images they were asked to remember during an episodic memory test. We then statistically assess the consistency of VMSs across observers for either correctly or incorrectly recognised images. The associations of the VMSs with eye fixations and saliency are analysed separately as well. Lastly, we adapt various deep learning architectures for the reconstruction and prediction of memorable regions in images and analyse the results when using transfer learning at the outputs of different convolutional network layers.</description><subject>Annotations</subject><subject>Computer vision</subject><subject>deep features</subject><subject>Human performance</subject><subject>Image enhancement</subject><subject>Image memorability</subject><subject>Image recognition</subject><subject>Machine learning</subject><subject>memory experiments</subject><subject>Object recognition</subject><subject>Observers</subject><subject>Organizations</subject><subject>Psychology</subject><subject>Semantics</subject><subject>visual memory schema</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRtFb_gIIEvHhJ3ZnZZrPeSv0qtCjYel02yUQjSaPZ5tB_b2qrB09zeJ_3ZXiEOAM5AJDmev48mk0GKMEM0IAig3uiB4ZMSEMy-6InIcIwjjE-Esfef0gJaijpUBwRyGGkDPTEzS3nxbJYvgWTyr1xMOOqblxSlMVqHSz8Jli9c_Ba-NaV23QdvKTvXLkTcZC70vPp7vbF4v5uPn4Mp08Pk_FoGqZKqVXIgKyMiZSKsiziNGGOnIkTpzU6IOkk5TrJ0KRSU5YnnOcJ6hi1chmC09QXV9vdz6b-atmvbFX4lMvSLbluvUUkBEIVUYde_kM_6rZZdt9ZVARaAmnoKNxSaVN733BuP5uics3agrQbs_bHrN2YtTuzXeliN90mFWd_lV-VHXC-BQpm_otjLZUhpG-sb3tV</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Akagunduz, Erdem</creator><creator>Bors, Adrian G.</creator><creator>Evans, Karla K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0792-7306</orcidid><orcidid>https://orcid.org/0000-0002-8440-1711</orcidid><orcidid>https://orcid.org/0000-0001-7838-0021</orcidid></search><sort><creationdate>20200901</creationdate><title>Defining Image Memorability Using the Visual Memory Schema</title><author>Akagunduz, Erdem ; Bors, Adrian G. ; Evans, Karla K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-e12e4996446dd6ecbee6a98ba772a130a03f7bd29c073dfbeffb278274ad21a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annotations</topic><topic>Computer vision</topic><topic>deep features</topic><topic>Human performance</topic><topic>Image enhancement</topic><topic>Image memorability</topic><topic>Image recognition</topic><topic>Machine learning</topic><topic>memory experiments</topic><topic>Object recognition</topic><topic>Observers</topic><topic>Organizations</topic><topic>Psychology</topic><topic>Semantics</topic><topic>visual memory schema</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akagunduz, Erdem</creatorcontrib><creatorcontrib>Bors, Adrian G.</creatorcontrib><creatorcontrib>Evans, Karla K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Akagunduz, Erdem</au><au>Bors, Adrian G.</au><au>Evans, Karla K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining Image Memorability Using the Visual Memory Schema</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>42</volume><issue>9</issue><spage>2165</spage><epage>2178</epage><pages>2165-2178</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Memorability of an image is a characteristic determined by the human observers' ability to remember images they have seen. Yet recent work on image memorability defines it as an intrinsic property that can be obtained independent of the observer. The current study aims to enhance our understanding and prediction of image memorability, improving upon existing approaches by incorporating the properties of cumulative human annotations. We propose a new concept called the Visual Memory Schema (VMS) referring to an organization of image components human observers share when encoding and recognizing images. The concept of VMS is operationalised by asking human observers to define memorable regions of images they were asked to remember during an episodic memory test. We then statistically assess the consistency of VMSs across observers for either correctly or incorrectly recognised images. The associations of the VMSs with eye fixations and saliency are analysed separately as well. Lastly, we adapt various deep learning architectures for the reconstruction and prediction of memorable regions in images and analyse the results when using transfer learning at the outputs of different convolutional network layers.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31056491</pmid><doi>10.1109/TPAMI.2019.2914392</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0792-7306</orcidid><orcidid>https://orcid.org/0000-0002-8440-1711</orcidid><orcidid>https://orcid.org/0000-0001-7838-0021</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2020-09, Vol.42 (9), p.2165-2178 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_journals_2431701371 |
source | IEEE Electronic Library (IEL) |
subjects | Annotations Computer vision deep features Human performance Image enhancement Image memorability Image recognition Machine learning memory experiments Object recognition Observers Organizations Psychology Semantics visual memory schema Visualization |
title | Defining Image Memorability Using the Visual Memory Schema |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20Image%20Memorability%20Using%20the%20Visual%20Memory%20Schema&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Akagunduz,%20Erdem&rft.date=2020-09-01&rft.volume=42&rft.issue=9&rft.spage=2165&rft.epage=2178&rft.pages=2165-2178&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2019.2914392&rft_dat=%3Cproquest_RIE%3E2431701371%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431701371&rft_id=info:pmid/31056491&rft_ieee_id=8704932&rfr_iscdi=true |