Defining Image Memorability Using the Visual Memory Schema

Memorability of an image is a characteristic determined by the human observers' ability to remember images they have seen. Yet recent work on image memorability defines it as an intrinsic property that can be obtained independent of the observer. The current study aims to enhance our understand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2020-09, Vol.42 (9), p.2165-2178
Hauptverfasser: Akagunduz, Erdem, Bors, Adrian G., Evans, Karla K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2178
container_issue 9
container_start_page 2165
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 42
creator Akagunduz, Erdem
Bors, Adrian G.
Evans, Karla K.
description Memorability of an image is a characteristic determined by the human observers' ability to remember images they have seen. Yet recent work on image memorability defines it as an intrinsic property that can be obtained independent of the observer. The current study aims to enhance our understanding and prediction of image memorability, improving upon existing approaches by incorporating the properties of cumulative human annotations. We propose a new concept called the Visual Memory Schema (VMS) referring to an organization of image components human observers share when encoding and recognizing images. The concept of VMS is operationalised by asking human observers to define memorable regions of images they were asked to remember during an episodic memory test. We then statistically assess the consistency of VMSs across observers for either correctly or incorrectly recognised images. The associations of the VMSs with eye fixations and saliency are analysed separately as well. Lastly, we adapt various deep learning architectures for the reconstruction and prediction of memorable regions in images and analyse the results when using transfer learning at the outputs of different convolutional network layers.
doi_str_mv 10.1109/TPAMI.2019.2914392
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2431701371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8704932</ieee_id><sourcerecordid>2431701371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-e12e4996446dd6ecbee6a98ba772a130a03f7bd29c073dfbeffb278274ad21a73</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRtFb_gIIEvHhJ3ZnZZrPeSv0qtCjYel02yUQjSaPZ5tB_b2qrB09zeJ_3ZXiEOAM5AJDmev48mk0GKMEM0IAig3uiB4ZMSEMy-6InIcIwjjE-Esfef0gJaijpUBwRyGGkDPTEzS3nxbJYvgWTyr1xMOOqblxSlMVqHSz8Jli9c_Ba-NaV23QdvKTvXLkTcZC70vPp7vbF4v5uPn4Mp08Pk_FoGqZKqVXIgKyMiZSKsiziNGGOnIkTpzU6IOkk5TrJ0KRSU5YnnOcJ6hi1chmC09QXV9vdz6b-atmvbFX4lMvSLbluvUUkBEIVUYde_kM_6rZZdt9ZVARaAmnoKNxSaVN733BuP5uics3agrQbs_bHrN2YtTuzXeliN90mFWd_lV-VHXC-BQpm_otjLZUhpG-sb3tV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431701371</pqid></control><display><type>article</type><title>Defining Image Memorability Using the Visual Memory Schema</title><source>IEEE Electronic Library (IEL)</source><creator>Akagunduz, Erdem ; Bors, Adrian G. ; Evans, Karla K.</creator><creatorcontrib>Akagunduz, Erdem ; Bors, Adrian G. ; Evans, Karla K.</creatorcontrib><description>Memorability of an image is a characteristic determined by the human observers' ability to remember images they have seen. Yet recent work on image memorability defines it as an intrinsic property that can be obtained independent of the observer. The current study aims to enhance our understanding and prediction of image memorability, improving upon existing approaches by incorporating the properties of cumulative human annotations. We propose a new concept called the Visual Memory Schema (VMS) referring to an organization of image components human observers share when encoding and recognizing images. The concept of VMS is operationalised by asking human observers to define memorable regions of images they were asked to remember during an episodic memory test. We then statistically assess the consistency of VMSs across observers for either correctly or incorrectly recognised images. The associations of the VMSs with eye fixations and saliency are analysed separately as well. Lastly, we adapt various deep learning architectures for the reconstruction and prediction of memorable regions in images and analyse the results when using transfer learning at the outputs of different convolutional network layers.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2019.2914392</identifier><identifier>PMID: 31056491</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Annotations ; Computer vision ; deep features ; Human performance ; Image enhancement ; Image memorability ; Image recognition ; Machine learning ; memory experiments ; Object recognition ; Observers ; Organizations ; Psychology ; Semantics ; visual memory schema ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2020-09, Vol.42 (9), p.2165-2178</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-e12e4996446dd6ecbee6a98ba772a130a03f7bd29c073dfbeffb278274ad21a73</citedby><cites>FETCH-LOGICAL-c444t-e12e4996446dd6ecbee6a98ba772a130a03f7bd29c073dfbeffb278274ad21a73</cites><orcidid>0000-0002-0792-7306 ; 0000-0002-8440-1711 ; 0000-0001-7838-0021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8704932$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8704932$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31056491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akagunduz, Erdem</creatorcontrib><creatorcontrib>Bors, Adrian G.</creatorcontrib><creatorcontrib>Evans, Karla K.</creatorcontrib><title>Defining Image Memorability Using the Visual Memory Schema</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Memorability of an image is a characteristic determined by the human observers' ability to remember images they have seen. Yet recent work on image memorability defines it as an intrinsic property that can be obtained independent of the observer. The current study aims to enhance our understanding and prediction of image memorability, improving upon existing approaches by incorporating the properties of cumulative human annotations. We propose a new concept called the Visual Memory Schema (VMS) referring to an organization of image components human observers share when encoding and recognizing images. The concept of VMS is operationalised by asking human observers to define memorable regions of images they were asked to remember during an episodic memory test. We then statistically assess the consistency of VMSs across observers for either correctly or incorrectly recognised images. The associations of the VMSs with eye fixations and saliency are analysed separately as well. Lastly, we adapt various deep learning architectures for the reconstruction and prediction of memorable regions in images and analyse the results when using transfer learning at the outputs of different convolutional network layers.</description><subject>Annotations</subject><subject>Computer vision</subject><subject>deep features</subject><subject>Human performance</subject><subject>Image enhancement</subject><subject>Image memorability</subject><subject>Image recognition</subject><subject>Machine learning</subject><subject>memory experiments</subject><subject>Object recognition</subject><subject>Observers</subject><subject>Organizations</subject><subject>Psychology</subject><subject>Semantics</subject><subject>visual memory schema</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRtFb_gIIEvHhJ3ZnZZrPeSv0qtCjYel02yUQjSaPZ5tB_b2qrB09zeJ_3ZXiEOAM5AJDmev48mk0GKMEM0IAig3uiB4ZMSEMy-6InIcIwjjE-Esfef0gJaijpUBwRyGGkDPTEzS3nxbJYvgWTyr1xMOOqblxSlMVqHSz8Jli9c_Ba-NaV23QdvKTvXLkTcZC70vPp7vbF4v5uPn4Mp08Pk_FoGqZKqVXIgKyMiZSKsiziNGGOnIkTpzU6IOkk5TrJ0KRSU5YnnOcJ6hi1chmC09QXV9vdz6b-atmvbFX4lMvSLbluvUUkBEIVUYde_kM_6rZZdt9ZVARaAmnoKNxSaVN733BuP5uics3agrQbs_bHrN2YtTuzXeliN90mFWd_lV-VHXC-BQpm_otjLZUhpG-sb3tV</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Akagunduz, Erdem</creator><creator>Bors, Adrian G.</creator><creator>Evans, Karla K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0792-7306</orcidid><orcidid>https://orcid.org/0000-0002-8440-1711</orcidid><orcidid>https://orcid.org/0000-0001-7838-0021</orcidid></search><sort><creationdate>20200901</creationdate><title>Defining Image Memorability Using the Visual Memory Schema</title><author>Akagunduz, Erdem ; Bors, Adrian G. ; Evans, Karla K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-e12e4996446dd6ecbee6a98ba772a130a03f7bd29c073dfbeffb278274ad21a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annotations</topic><topic>Computer vision</topic><topic>deep features</topic><topic>Human performance</topic><topic>Image enhancement</topic><topic>Image memorability</topic><topic>Image recognition</topic><topic>Machine learning</topic><topic>memory experiments</topic><topic>Object recognition</topic><topic>Observers</topic><topic>Organizations</topic><topic>Psychology</topic><topic>Semantics</topic><topic>visual memory schema</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akagunduz, Erdem</creatorcontrib><creatorcontrib>Bors, Adrian G.</creatorcontrib><creatorcontrib>Evans, Karla K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Akagunduz, Erdem</au><au>Bors, Adrian G.</au><au>Evans, Karla K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining Image Memorability Using the Visual Memory Schema</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>42</volume><issue>9</issue><spage>2165</spage><epage>2178</epage><pages>2165-2178</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Memorability of an image is a characteristic determined by the human observers' ability to remember images they have seen. Yet recent work on image memorability defines it as an intrinsic property that can be obtained independent of the observer. The current study aims to enhance our understanding and prediction of image memorability, improving upon existing approaches by incorporating the properties of cumulative human annotations. We propose a new concept called the Visual Memory Schema (VMS) referring to an organization of image components human observers share when encoding and recognizing images. The concept of VMS is operationalised by asking human observers to define memorable regions of images they were asked to remember during an episodic memory test. We then statistically assess the consistency of VMSs across observers for either correctly or incorrectly recognised images. The associations of the VMSs with eye fixations and saliency are analysed separately as well. Lastly, we adapt various deep learning architectures for the reconstruction and prediction of memorable regions in images and analyse the results when using transfer learning at the outputs of different convolutional network layers.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31056491</pmid><doi>10.1109/TPAMI.2019.2914392</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0792-7306</orcidid><orcidid>https://orcid.org/0000-0002-8440-1711</orcidid><orcidid>https://orcid.org/0000-0001-7838-0021</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2020-09, Vol.42 (9), p.2165-2178
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_journals_2431701371
source IEEE Electronic Library (IEL)
subjects Annotations
Computer vision
deep features
Human performance
Image enhancement
Image memorability
Image recognition
Machine learning
memory experiments
Object recognition
Observers
Organizations
Psychology
Semantics
visual memory schema
Visualization
title Defining Image Memorability Using the Visual Memory Schema
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20Image%20Memorability%20Using%20the%20Visual%20Memory%20Schema&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Akagunduz,%20Erdem&rft.date=2020-09-01&rft.volume=42&rft.issue=9&rft.spage=2165&rft.epage=2178&rft.pages=2165-2178&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2019.2914392&rft_dat=%3Cproquest_RIE%3E2431701371%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431701371&rft_id=info:pmid/31056491&rft_ieee_id=8704932&rfr_iscdi=true