Reducing Migration of Sintered Ag for Power Devices Operating at High Temperature

Wide-bandgap power devices are usually operated at a higher temperature or larger electrical bias and the harsh conditions often lead to early failure of the widely used Ag-based die-attach materials due to electrochemical migration (ECM). Common methods to mitigate ECM tend to be quite costly and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2020-12, Vol.35 (12), p.12646-12650
Hauptverfasser: Li, Dan, Mei, Yunhui, Xin, Yunchang, Li, Zhiqiao, Chu, Paul K., Ma, Changsheng, Lu, Guo-Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12650
container_issue 12
container_start_page 12646
container_title IEEE transactions on power electronics
container_volume 35
creator Li, Dan
Mei, Yunhui
Xin, Yunchang
Li, Zhiqiao
Chu, Paul K.
Ma, Changsheng
Lu, Guo-Quan
description Wide-bandgap power devices are usually operated at a higher temperature or larger electrical bias and the harsh conditions often lead to early failure of the widely used Ag-based die-attach materials due to electrochemical migration (ECM). Common methods to mitigate ECM tend to be quite costly and can only enhance the performance slightly under high-temperature conditions. In this letter, novel nano-Ag-based die-attach materials are designed and prepared by doping with 0.1 wt% Si nanoparticles. The higher affinity of Si to oxygen reduces oxidation of silver and increases the median time to failure at 400 °C by 4.8 times. According to the life prediction model, the materials extend the lifetime for operation at 200 °C from 9.5 to 63 years, while the cost remains unchanged. The sintered nano-Ag-0.1%Si die attachment has long-term reliability rendering them desirable for power devices operating at a high temperature.
doi_str_mv 10.1109/TPEL.2020.2994343
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2431701008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9093160</ieee_id><sourcerecordid>2431701008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a8899b03bf70d7c7b28b427a883cb8da738f2031c278e8f308bc6f7b3519af3a3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN15knRLcjnmx4TJps7rkKYnNcO1M20V_72tG14dODzv-XgIuWQwYgz0zXp1txhx4DDiWqciFUdkwHTKEmAgj8kAlBonSmtxSs7qegPA0jGwAXl-wbx1oSzoUyiibUJV0srT11A2GDGn04L6KtJV9Y2R3uJXcFjT5Q57tAvZhs5D8U7XuP3rtRHPyYm3HzVeHOqQvN3frWfzZLF8eJxNF4njWjSJVd01GYjMS8ilkxlXWcpl1xYuU7mVQnkOgjkuFSovQGVu4mUmxkxbL6wYkuv93F2sPlusG7Op2lh2Kw1PBZPd46A6iu0pF6u6jujNLoatjT-GgenNmd6c6c2Zg7kuc7XPBET85zVowSYgfgH9B2kv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431701008</pqid></control><display><type>article</type><title>Reducing Migration of Sintered Ag for Power Devices Operating at High Temperature</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Dan ; Mei, Yunhui ; Xin, Yunchang ; Li, Zhiqiao ; Chu, Paul K. ; Ma, Changsheng ; Lu, Guo-Quan</creator><creatorcontrib>Li, Dan ; Mei, Yunhui ; Xin, Yunchang ; Li, Zhiqiao ; Chu, Paul K. ; Ma, Changsheng ; Lu, Guo-Quan</creatorcontrib><description>Wide-bandgap power devices are usually operated at a higher temperature or larger electrical bias and the harsh conditions often lead to early failure of the widely used Ag-based die-attach materials due to electrochemical migration (ECM). Common methods to mitigate ECM tend to be quite costly and can only enhance the performance slightly under high-temperature conditions. In this letter, novel nano-Ag-based die-attach materials are designed and prepared by doping with 0.1 wt% Si nanoparticles. The higher affinity of Si to oxygen reduces oxidation of silver and increases the median time to failure at 400 °C by 4.8 times. According to the life prediction model, the materials extend the lifetime for operation at 200 °C from 9.5 to 63 years, while the cost remains unchanged. The sintered nano-Ag-0.1%Si die attachment has long-term reliability rendering them desirable for power devices operating at a high temperature.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2020.2994343</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Electrochemical migration (ECM) ; Electrodes ; Electronic countermeasures ; Electronic devices ; High temperature ; high temperatures ; Life prediction ; nano-AG ; Nanoparticles ; Nanoscale devices ; Nanostructured materials ; Oxidation ; Power electronics ; Prediction models ; Silicon ; Silver ; Sintering</subject><ispartof>IEEE transactions on power electronics, 2020-12, Vol.35 (12), p.12646-12650</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a8899b03bf70d7c7b28b427a883cb8da738f2031c278e8f308bc6f7b3519af3a3</citedby><cites>FETCH-LOGICAL-c293t-a8899b03bf70d7c7b28b427a883cb8da738f2031c278e8f308bc6f7b3519af3a3</cites><orcidid>0000-0002-6508-4343 ; 0000-0002-5581-4883 ; 0000-0003-3079-8589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9093160$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9093160$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Mei, Yunhui</creatorcontrib><creatorcontrib>Xin, Yunchang</creatorcontrib><creatorcontrib>Li, Zhiqiao</creatorcontrib><creatorcontrib>Chu, Paul K.</creatorcontrib><creatorcontrib>Ma, Changsheng</creatorcontrib><creatorcontrib>Lu, Guo-Quan</creatorcontrib><title>Reducing Migration of Sintered Ag for Power Devices Operating at High Temperature</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Wide-bandgap power devices are usually operated at a higher temperature or larger electrical bias and the harsh conditions often lead to early failure of the widely used Ag-based die-attach materials due to electrochemical migration (ECM). Common methods to mitigate ECM tend to be quite costly and can only enhance the performance slightly under high-temperature conditions. In this letter, novel nano-Ag-based die-attach materials are designed and prepared by doping with 0.1 wt% Si nanoparticles. The higher affinity of Si to oxygen reduces oxidation of silver and increases the median time to failure at 400 °C by 4.8 times. According to the life prediction model, the materials extend the lifetime for operation at 200 °C from 9.5 to 63 years, while the cost remains unchanged. The sintered nano-Ag-0.1%Si die attachment has long-term reliability rendering them desirable for power devices operating at a high temperature.</description><subject>Electrochemical migration (ECM)</subject><subject>Electrodes</subject><subject>Electronic countermeasures</subject><subject>Electronic devices</subject><subject>High temperature</subject><subject>high temperatures</subject><subject>Life prediction</subject><subject>nano-AG</subject><subject>Nanoparticles</subject><subject>Nanoscale devices</subject><subject>Nanostructured materials</subject><subject>Oxidation</subject><subject>Power electronics</subject><subject>Prediction models</subject><subject>Silicon</subject><subject>Silver</subject><subject>Sintering</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN15knRLcjnmx4TJps7rkKYnNcO1M20V_72tG14dODzv-XgIuWQwYgz0zXp1txhx4DDiWqciFUdkwHTKEmAgj8kAlBonSmtxSs7qegPA0jGwAXl-wbx1oSzoUyiibUJV0srT11A2GDGn04L6KtJV9Y2R3uJXcFjT5Q57tAvZhs5D8U7XuP3rtRHPyYm3HzVeHOqQvN3frWfzZLF8eJxNF4njWjSJVd01GYjMS8ilkxlXWcpl1xYuU7mVQnkOgjkuFSovQGVu4mUmxkxbL6wYkuv93F2sPlusG7Op2lh2Kw1PBZPd46A6iu0pF6u6jujNLoatjT-GgenNmd6c6c2Zg7kuc7XPBET85zVowSYgfgH9B2kv</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Li, Dan</creator><creator>Mei, Yunhui</creator><creator>Xin, Yunchang</creator><creator>Li, Zhiqiao</creator><creator>Chu, Paul K.</creator><creator>Ma, Changsheng</creator><creator>Lu, Guo-Quan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6508-4343</orcidid><orcidid>https://orcid.org/0000-0002-5581-4883</orcidid><orcidid>https://orcid.org/0000-0003-3079-8589</orcidid></search><sort><creationdate>20201201</creationdate><title>Reducing Migration of Sintered Ag for Power Devices Operating at High Temperature</title><author>Li, Dan ; Mei, Yunhui ; Xin, Yunchang ; Li, Zhiqiao ; Chu, Paul K. ; Ma, Changsheng ; Lu, Guo-Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a8899b03bf70d7c7b28b427a883cb8da738f2031c278e8f308bc6f7b3519af3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Electrochemical migration (ECM)</topic><topic>Electrodes</topic><topic>Electronic countermeasures</topic><topic>Electronic devices</topic><topic>High temperature</topic><topic>high temperatures</topic><topic>Life prediction</topic><topic>nano-AG</topic><topic>Nanoparticles</topic><topic>Nanoscale devices</topic><topic>Nanostructured materials</topic><topic>Oxidation</topic><topic>Power electronics</topic><topic>Prediction models</topic><topic>Silicon</topic><topic>Silver</topic><topic>Sintering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Mei, Yunhui</creatorcontrib><creatorcontrib>Xin, Yunchang</creatorcontrib><creatorcontrib>Li, Zhiqiao</creatorcontrib><creatorcontrib>Chu, Paul K.</creatorcontrib><creatorcontrib>Ma, Changsheng</creatorcontrib><creatorcontrib>Lu, Guo-Quan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Dan</au><au>Mei, Yunhui</au><au>Xin, Yunchang</au><au>Li, Zhiqiao</au><au>Chu, Paul K.</au><au>Ma, Changsheng</au><au>Lu, Guo-Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing Migration of Sintered Ag for Power Devices Operating at High Temperature</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>35</volume><issue>12</issue><spage>12646</spage><epage>12650</epage><pages>12646-12650</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Wide-bandgap power devices are usually operated at a higher temperature or larger electrical bias and the harsh conditions often lead to early failure of the widely used Ag-based die-attach materials due to electrochemical migration (ECM). Common methods to mitigate ECM tend to be quite costly and can only enhance the performance slightly under high-temperature conditions. In this letter, novel nano-Ag-based die-attach materials are designed and prepared by doping with 0.1 wt% Si nanoparticles. The higher affinity of Si to oxygen reduces oxidation of silver and increases the median time to failure at 400 °C by 4.8 times. According to the life prediction model, the materials extend the lifetime for operation at 200 °C from 9.5 to 63 years, while the cost remains unchanged. The sintered nano-Ag-0.1%Si die attachment has long-term reliability rendering them desirable for power devices operating at a high temperature.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2020.2994343</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6508-4343</orcidid><orcidid>https://orcid.org/0000-0002-5581-4883</orcidid><orcidid>https://orcid.org/0000-0003-3079-8589</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2020-12, Vol.35 (12), p.12646-12650
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_2431701008
source IEEE Electronic Library (IEL)
subjects Electrochemical migration (ECM)
Electrodes
Electronic countermeasures
Electronic devices
High temperature
high temperatures
Life prediction
nano-AG
Nanoparticles
Nanoscale devices
Nanostructured materials
Oxidation
Power electronics
Prediction models
Silicon
Silver
Sintering
title Reducing Migration of Sintered Ag for Power Devices Operating at High Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20Migration%20of%20Sintered%20Ag%20for%20Power%20Devices%20Operating%20at%20High%20Temperature&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Li,%20Dan&rft.date=2020-12-01&rft.volume=35&rft.issue=12&rft.spage=12646&rft.epage=12650&rft.pages=12646-12650&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2020.2994343&rft_dat=%3Cproquest_RIE%3E2431701008%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431701008&rft_id=info:pmid/&rft_ieee_id=9093160&rfr_iscdi=true