Improved thermal conductivity of β‐Si3N4 ceramics by lowering SiO2/Y2O3 ratio using YH2 as sintering additive
A two‐step sintering process was conducted to produce β‐Si3N4 ceramics with high thermal conductivity. During the first step, native SiO2 was eliminated, and Y2O3 was in situ generated by a metal hydride reduction process, resulting in a high Y2O3/SiO2 ratio. The substitution YH2 for Y2O3 endow Si3N...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2020-10, Vol.103 (10), p.5567-5572 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5572 |
---|---|
container_issue | 10 |
container_start_page | 5567 |
container_title | Journal of the American Ceramic Society |
container_volume | 103 |
creator | Wang, Weide Yao, Dongxu Liang, Hanqin Xia, Yongfeng Zuo, Kaihui Yin, Jinwei Zeng, Yu‐Ping |
description | A two‐step sintering process was conducted to produce β‐Si3N4 ceramics with high thermal conductivity. During the first step, native SiO2 was eliminated, and Y2O3 was in situ generated by a metal hydride reduction process, resulting in a high Y2O3/SiO2 ratio. The substitution YH2 for Y2O3 endow Si3N4 ceramics with an increase of 29% in thermal conductivity from 95.3 to 123 W m−1 K−1 after sintered at 1900°C for 12 hours despite an inferior sinterability. This was primarily attributed to the purified enlarged grains, devitrified grain boundary phase, and reduced lattice oxygen content in the YH2‐MgO‐doped material.
During the first sintering step, native SiO2 was eliminated, and Y2O3 was in situ generated by a metal hydride reduction process. During the second sintering step, the phase transformation and grain growth occurred via the dissolution‐reprecipitation mechanism in an oxygen‐lacked liquid phase. Dense β‐Si3N4 ceramics with purified enlarged grains, devitrified grain‐boundary phase, and reduced lattice oxygen content was obtained. |
doi_str_mv | 10.1111/jace.17271 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2431674505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431674505</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1401-5d5b04d3b7e206e06a93fbc45864740b0c8f8f3f1b854fe8f6220304b55432b53</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EEqWw4QSWWKcd_yXpsqoKLaroorDoyrITG1wlTXCSouw4AmfhIByCk5C0zGbejJ7eaD6EbgmMSFfjnUrMiEQ0ImdoQIQgAZ2Q8BwNAIAGUUzhEl1V1a4bySTmA1Qu89IXB5Pi-s34XGU4KfZpk9Tu4OoWFxb_fP9-fm0ce-I4MV7lLqmwbnFWfBjv9q9449Z0vKVrhr2qXYGbqt9uFxSrCne6PtlUmrou1FyjC6uyytz89yF6uZ8_zxbBav2wnE1XQUk4kECkQgNPmY4MhdBAqCbM6oSLOOQRBw1JbGPLLNGx4NbENqQUGHAtBGdUCzZEd6fc7r33xlS13BWN33cnJeWMhBEX0LvIyfXhMtPK0rtc-VYSkD1O2eOUR5zycTqbHxX7A87matw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431674505</pqid></control><display><type>article</type><title>Improved thermal conductivity of β‐Si3N4 ceramics by lowering SiO2/Y2O3 ratio using YH2 as sintering additive</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Weide ; Yao, Dongxu ; Liang, Hanqin ; Xia, Yongfeng ; Zuo, Kaihui ; Yin, Jinwei ; Zeng, Yu‐Ping</creator><creatorcontrib>Wang, Weide ; Yao, Dongxu ; Liang, Hanqin ; Xia, Yongfeng ; Zuo, Kaihui ; Yin, Jinwei ; Zeng, Yu‐Ping</creatorcontrib><description>A two‐step sintering process was conducted to produce β‐Si3N4 ceramics with high thermal conductivity. During the first step, native SiO2 was eliminated, and Y2O3 was in situ generated by a metal hydride reduction process, resulting in a high Y2O3/SiO2 ratio. The substitution YH2 for Y2O3 endow Si3N4 ceramics with an increase of 29% in thermal conductivity from 95.3 to 123 W m−1 K−1 after sintered at 1900°C for 12 hours despite an inferior sinterability. This was primarily attributed to the purified enlarged grains, devitrified grain boundary phase, and reduced lattice oxygen content in the YH2‐MgO‐doped material.
During the first sintering step, native SiO2 was eliminated, and Y2O3 was in situ generated by a metal hydride reduction process. During the second sintering step, the phase transformation and grain growth occurred via the dissolution‐reprecipitation mechanism in an oxygen‐lacked liquid phase. Dense β‐Si3N4 ceramics with purified enlarged grains, devitrified grain‐boundary phase, and reduced lattice oxygen content was obtained.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17271</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Ceramics ; Devitrification ; Grain boundaries ; Heat conductivity ; Heat transfer ; Metal hydrides ; Oxygen content ; Reduction (metal working) ; Silicon dioxide ; Silicon nitride ; sinter/sintering ; Sinterability ; Sintering ; Thermal conductivity ; yttrium hydride ; Yttrium oxide</subject><ispartof>Journal of the American Ceramic Society, 2020-10, Vol.103 (10), p.5567-5572</ispartof><rights>2020 The American Ceramic Society</rights><rights>2020 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3319-9824 ; 0000-0002-8982-502X ; 0000-0001-8266-5855 ; 0000-0002-1067-3757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.17271$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.17271$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Wang, Weide</creatorcontrib><creatorcontrib>Yao, Dongxu</creatorcontrib><creatorcontrib>Liang, Hanqin</creatorcontrib><creatorcontrib>Xia, Yongfeng</creatorcontrib><creatorcontrib>Zuo, Kaihui</creatorcontrib><creatorcontrib>Yin, Jinwei</creatorcontrib><creatorcontrib>Zeng, Yu‐Ping</creatorcontrib><title>Improved thermal conductivity of β‐Si3N4 ceramics by lowering SiO2/Y2O3 ratio using YH2 as sintering additive</title><title>Journal of the American Ceramic Society</title><description>A two‐step sintering process was conducted to produce β‐Si3N4 ceramics with high thermal conductivity. During the first step, native SiO2 was eliminated, and Y2O3 was in situ generated by a metal hydride reduction process, resulting in a high Y2O3/SiO2 ratio. The substitution YH2 for Y2O3 endow Si3N4 ceramics with an increase of 29% in thermal conductivity from 95.3 to 123 W m−1 K−1 after sintered at 1900°C for 12 hours despite an inferior sinterability. This was primarily attributed to the purified enlarged grains, devitrified grain boundary phase, and reduced lattice oxygen content in the YH2‐MgO‐doped material.
During the first sintering step, native SiO2 was eliminated, and Y2O3 was in situ generated by a metal hydride reduction process. During the second sintering step, the phase transformation and grain growth occurred via the dissolution‐reprecipitation mechanism in an oxygen‐lacked liquid phase. Dense β‐Si3N4 ceramics with purified enlarged grains, devitrified grain‐boundary phase, and reduced lattice oxygen content was obtained.</description><subject>Ceramics</subject><subject>Devitrification</subject><subject>Grain boundaries</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Metal hydrides</subject><subject>Oxygen content</subject><subject>Reduction (metal working)</subject><subject>Silicon dioxide</subject><subject>Silicon nitride</subject><subject>sinter/sintering</subject><subject>Sinterability</subject><subject>Sintering</subject><subject>Thermal conductivity</subject><subject>yttrium hydride</subject><subject>Yttrium oxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQhS0EEqWw4QSWWKcd_yXpsqoKLaroorDoyrITG1wlTXCSouw4AmfhIByCk5C0zGbejJ7eaD6EbgmMSFfjnUrMiEQ0ImdoQIQgAZ2Q8BwNAIAGUUzhEl1V1a4bySTmA1Qu89IXB5Pi-s34XGU4KfZpk9Tu4OoWFxb_fP9-fm0ce-I4MV7lLqmwbnFWfBjv9q9449Z0vKVrhr2qXYGbqt9uFxSrCne6PtlUmrou1FyjC6uyytz89yF6uZ8_zxbBav2wnE1XQUk4kECkQgNPmY4MhdBAqCbM6oSLOOQRBw1JbGPLLNGx4NbENqQUGHAtBGdUCzZEd6fc7r33xlS13BWN33cnJeWMhBEX0LvIyfXhMtPK0rtc-VYSkD1O2eOUR5zycTqbHxX7A87matw</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Wang, Weide</creator><creator>Yao, Dongxu</creator><creator>Liang, Hanqin</creator><creator>Xia, Yongfeng</creator><creator>Zuo, Kaihui</creator><creator>Yin, Jinwei</creator><creator>Zeng, Yu‐Ping</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3319-9824</orcidid><orcidid>https://orcid.org/0000-0002-8982-502X</orcidid><orcidid>https://orcid.org/0000-0001-8266-5855</orcidid><orcidid>https://orcid.org/0000-0002-1067-3757</orcidid></search><sort><creationdate>202010</creationdate><title>Improved thermal conductivity of β‐Si3N4 ceramics by lowering SiO2/Y2O3 ratio using YH2 as sintering additive</title><author>Wang, Weide ; Yao, Dongxu ; Liang, Hanqin ; Xia, Yongfeng ; Zuo, Kaihui ; Yin, Jinwei ; Zeng, Yu‐Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1401-5d5b04d3b7e206e06a93fbc45864740b0c8f8f3f1b854fe8f6220304b55432b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ceramics</topic><topic>Devitrification</topic><topic>Grain boundaries</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Metal hydrides</topic><topic>Oxygen content</topic><topic>Reduction (metal working)</topic><topic>Silicon dioxide</topic><topic>Silicon nitride</topic><topic>sinter/sintering</topic><topic>Sinterability</topic><topic>Sintering</topic><topic>Thermal conductivity</topic><topic>yttrium hydride</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Weide</creatorcontrib><creatorcontrib>Yao, Dongxu</creatorcontrib><creatorcontrib>Liang, Hanqin</creatorcontrib><creatorcontrib>Xia, Yongfeng</creatorcontrib><creatorcontrib>Zuo, Kaihui</creatorcontrib><creatorcontrib>Yin, Jinwei</creatorcontrib><creatorcontrib>Zeng, Yu‐Ping</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Weide</au><au>Yao, Dongxu</au><au>Liang, Hanqin</au><au>Xia, Yongfeng</au><au>Zuo, Kaihui</au><au>Yin, Jinwei</au><au>Zeng, Yu‐Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved thermal conductivity of β‐Si3N4 ceramics by lowering SiO2/Y2O3 ratio using YH2 as sintering additive</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2020-10</date><risdate>2020</risdate><volume>103</volume><issue>10</issue><spage>5567</spage><epage>5572</epage><pages>5567-5572</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>A two‐step sintering process was conducted to produce β‐Si3N4 ceramics with high thermal conductivity. During the first step, native SiO2 was eliminated, and Y2O3 was in situ generated by a metal hydride reduction process, resulting in a high Y2O3/SiO2 ratio. The substitution YH2 for Y2O3 endow Si3N4 ceramics with an increase of 29% in thermal conductivity from 95.3 to 123 W m−1 K−1 after sintered at 1900°C for 12 hours despite an inferior sinterability. This was primarily attributed to the purified enlarged grains, devitrified grain boundary phase, and reduced lattice oxygen content in the YH2‐MgO‐doped material.
During the first sintering step, native SiO2 was eliminated, and Y2O3 was in situ generated by a metal hydride reduction process. During the second sintering step, the phase transformation and grain growth occurred via the dissolution‐reprecipitation mechanism in an oxygen‐lacked liquid phase. Dense β‐Si3N4 ceramics with purified enlarged grains, devitrified grain‐boundary phase, and reduced lattice oxygen content was obtained.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17271</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3319-9824</orcidid><orcidid>https://orcid.org/0000-0002-8982-502X</orcidid><orcidid>https://orcid.org/0000-0001-8266-5855</orcidid><orcidid>https://orcid.org/0000-0002-1067-3757</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2020-10, Vol.103 (10), p.5567-5572 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2431674505 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Ceramics Devitrification Grain boundaries Heat conductivity Heat transfer Metal hydrides Oxygen content Reduction (metal working) Silicon dioxide Silicon nitride sinter/sintering Sinterability Sintering Thermal conductivity yttrium hydride Yttrium oxide |
title | Improved thermal conductivity of β‐Si3N4 ceramics by lowering SiO2/Y2O3 ratio using YH2 as sintering additive |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20thermal%20conductivity%20of%20%CE%B2%E2%80%90Si3N4%20ceramics%20by%20lowering%20SiO2/Y2O3%20ratio%20using%20YH2%20as%20sintering%20additive&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Wang,%20Weide&rft.date=2020-10&rft.volume=103&rft.issue=10&rft.spage=5567&rft.epage=5572&rft.pages=5567-5572&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17271&rft_dat=%3Cproquest_wiley%3E2431674505%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431674505&rft_id=info:pmid/&rfr_iscdi=true |