A Distance-based Method for Spatial Prediction in the Presence of Trend

A new method based on distances for modeling continuous random data in Gaussian random fields is presented. In non-stationary cases in which a trend or drift is present, dealing with information in regionalized mixed variables (including categorical, discrete and continuous variables) is common in g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural, biological, and environmental statistics biological, and environmental statistics, 2020-09, Vol.25 (3), p.315-338
Hauptverfasser: Melo, Carlos E., Mateu, Jorge, Melo, Oscar O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 338
container_issue 3
container_start_page 315
container_title Journal of agricultural, biological, and environmental statistics
container_volume 25
creator Melo, Carlos E.
Mateu, Jorge
Melo, Oscar O.
description A new method based on distances for modeling continuous random data in Gaussian random fields is presented. In non-stationary cases in which a trend or drift is present, dealing with information in regionalized mixed variables (including categorical, discrete and continuous variables) is common in geosciences and environmental sciences. The proposed distance-based method is used in a geostatistical model to estimate the trend and the covariance structure, which are key features in interpolation and monitoring problems. This strategy takes full advantage of the information at hand due to the relationship between observations, by using a spectral decomposition of a selected distance and the corresponding principal coordinates. Unconditional simulations are performed to validate the efficiency of the proposed method under a variety of scenarios, and the results show a statistical gain when compared with a more traditional detrending method. Finally, our method is illustrated with two applications: earth’s average daily temperatures in Croatia, and calcium concentration measured at a depth of 0–20 cm in Brazil.
doi_str_mv 10.1007/s13253-020-00395-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2431607301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632020321</galeid><jstor_id>48736990</jstor_id><sourcerecordid>A632020321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-586c41d979c240824b53027b0d78811d4840e15b59ab48109aa679bbefa2d2eb3</originalsourceid><addsrcrecordid>eNp9kUFrHCEUx6U00GTTL1AoCD3lYPLUcRyPS9KmgYSEJD2LM77ZuGzGjbrQfvu6ndKQS_GgPH4_39M_IZ84nHIAfZa5FEoyEMAApFFMvCOHXEnNRGvk-3qGTjHNuf5AjnJeA3DZgjgkl0t6EXJx04Csdxk9vcHyFD0dY6IPW1eC29C7hD4MJcSJhomWJ9xXMlaHxpE-Jpz8MTkY3Sbjx7_7gvz49vXx_Du7vr28Ol9es0G2qjDVtUPDvdFmEA10oumVBKF78LrrOPdN1wBy1Svj-qbjYJxrtel7HJ3wAnu5IF_me7cpvuwwF7uOuzTVllY0kregZX3agpzO1Mpt0IZpjCW5oS6Pz2GIE46h1petFPXHpNgLJ2-EyhT8WVZul7O9erh_y4qZHVLMOeFotyk8u_TLcrD7NOychq28_ZOGFVWSs5QrPK0wvc79X-vzbK1zielfn6bTsjUG5G-kpJKV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431607301</pqid></control><display><type>article</type><title>A Distance-based Method for Spatial Prediction in the Presence of Trend</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>SpringerLink Journals - AutoHoldings</source><creator>Melo, Carlos E. ; Mateu, Jorge ; Melo, Oscar O.</creator><creatorcontrib>Melo, Carlos E. ; Mateu, Jorge ; Melo, Oscar O.</creatorcontrib><description>A new method based on distances for modeling continuous random data in Gaussian random fields is presented. In non-stationary cases in which a trend or drift is present, dealing with information in regionalized mixed variables (including categorical, discrete and continuous variables) is common in geosciences and environmental sciences. The proposed distance-based method is used in a geostatistical model to estimate the trend and the covariance structure, which are key features in interpolation and monitoring problems. This strategy takes full advantage of the information at hand due to the relationship between observations, by using a spectral decomposition of a selected distance and the corresponding principal coordinates. Unconditional simulations are performed to validate the efficiency of the proposed method under a variety of scenarios, and the results show a statistical gain when compared with a more traditional detrending method. Finally, our method is illustrated with two applications: earth’s average daily temperatures in Croatia, and calcium concentration measured at a depth of 0–20 cm in Brazil.</description><identifier>ISSN: 1085-7117</identifier><identifier>EISSN: 1537-2693</identifier><identifier>DOI: 10.1007/s13253-020-00395-2</identifier><language>eng</language><publisher>New York: Springer Science + Business Media</publisher><subject>Agriculture ; Biostatistics ; Calcium ; Computer simulation ; Continuity (mathematics) ; Covariance ; Depth perception ; Environmental science ; Fields (mathematics) ; Health Sciences ; Interpolation ; Mathematics and Statistics ; Medicine ; Monitoring/Environmental Analysis ; Statistics ; Statistics for Life Sciences</subject><ispartof>Journal of agricultural, biological, and environmental statistics, 2020-09, Vol.25 (3), p.315-338</ispartof><rights>2020 International Biometric Society</rights><rights>International Biometric Society 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>International Biometric Society 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-586c41d979c240824b53027b0d78811d4840e15b59ab48109aa679bbefa2d2eb3</cites><orcidid>0000-0002-0296-4511 ; 0000-0002-2868-7604 ; 0000-0002-5598-1913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48736990$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48736990$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,41469,42538,51300,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>Melo, Carlos E.</creatorcontrib><creatorcontrib>Mateu, Jorge</creatorcontrib><creatorcontrib>Melo, Oscar O.</creatorcontrib><title>A Distance-based Method for Spatial Prediction in the Presence of Trend</title><title>Journal of agricultural, biological, and environmental statistics</title><addtitle>JABES</addtitle><description>A new method based on distances for modeling continuous random data in Gaussian random fields is presented. In non-stationary cases in which a trend or drift is present, dealing with information in regionalized mixed variables (including categorical, discrete and continuous variables) is common in geosciences and environmental sciences. The proposed distance-based method is used in a geostatistical model to estimate the trend and the covariance structure, which are key features in interpolation and monitoring problems. This strategy takes full advantage of the information at hand due to the relationship between observations, by using a spectral decomposition of a selected distance and the corresponding principal coordinates. Unconditional simulations are performed to validate the efficiency of the proposed method under a variety of scenarios, and the results show a statistical gain when compared with a more traditional detrending method. Finally, our method is illustrated with two applications: earth’s average daily temperatures in Croatia, and calcium concentration measured at a depth of 0–20 cm in Brazil.</description><subject>Agriculture</subject><subject>Biostatistics</subject><subject>Calcium</subject><subject>Computer simulation</subject><subject>Continuity (mathematics)</subject><subject>Covariance</subject><subject>Depth perception</subject><subject>Environmental science</subject><subject>Fields (mathematics)</subject><subject>Health Sciences</subject><subject>Interpolation</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Monitoring/Environmental Analysis</subject><subject>Statistics</subject><subject>Statistics for Life Sciences</subject><issn>1085-7117</issn><issn>1537-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrHCEUx6U00GTTL1AoCD3lYPLUcRyPS9KmgYSEJD2LM77ZuGzGjbrQfvu6ndKQS_GgPH4_39M_IZ84nHIAfZa5FEoyEMAApFFMvCOHXEnNRGvk-3qGTjHNuf5AjnJeA3DZgjgkl0t6EXJx04Csdxk9vcHyFD0dY6IPW1eC29C7hD4MJcSJhomWJ9xXMlaHxpE-Jpz8MTkY3Sbjx7_7gvz49vXx_Du7vr28Ol9es0G2qjDVtUPDvdFmEA10oumVBKF78LrrOPdN1wBy1Svj-qbjYJxrtel7HJ3wAnu5IF_me7cpvuwwF7uOuzTVllY0kregZX3agpzO1Mpt0IZpjCW5oS6Pz2GIE46h1petFPXHpNgLJ2-EyhT8WVZul7O9erh_y4qZHVLMOeFotyk8u_TLcrD7NOychq28_ZOGFVWSs5QrPK0wvc79X-vzbK1zielfn6bTsjUG5G-kpJKV</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Melo, Carlos E.</creator><creator>Mateu, Jorge</creator><creator>Melo, Oscar O.</creator><general>Springer Science + Business Media</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0002-0296-4511</orcidid><orcidid>https://orcid.org/0000-0002-2868-7604</orcidid><orcidid>https://orcid.org/0000-0002-5598-1913</orcidid></search><sort><creationdate>20200901</creationdate><title>A Distance-based Method for Spatial Prediction in the Presence of Trend</title><author>Melo, Carlos E. ; Mateu, Jorge ; Melo, Oscar O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-586c41d979c240824b53027b0d78811d4840e15b59ab48109aa679bbefa2d2eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agriculture</topic><topic>Biostatistics</topic><topic>Calcium</topic><topic>Computer simulation</topic><topic>Continuity (mathematics)</topic><topic>Covariance</topic><topic>Depth perception</topic><topic>Environmental science</topic><topic>Fields (mathematics)</topic><topic>Health Sciences</topic><topic>Interpolation</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Monitoring/Environmental Analysis</topic><topic>Statistics</topic><topic>Statistics for Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melo, Carlos E.</creatorcontrib><creatorcontrib>Mateu, Jorge</creatorcontrib><creatorcontrib>Melo, Oscar O.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melo, Carlos E.</au><au>Mateu, Jorge</au><au>Melo, Oscar O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Distance-based Method for Spatial Prediction in the Presence of Trend</atitle><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle><stitle>JABES</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>25</volume><issue>3</issue><spage>315</spage><epage>338</epage><pages>315-338</pages><issn>1085-7117</issn><eissn>1537-2693</eissn><abstract>A new method based on distances for modeling continuous random data in Gaussian random fields is presented. In non-stationary cases in which a trend or drift is present, dealing with information in regionalized mixed variables (including categorical, discrete and continuous variables) is common in geosciences and environmental sciences. The proposed distance-based method is used in a geostatistical model to estimate the trend and the covariance structure, which are key features in interpolation and monitoring problems. This strategy takes full advantage of the information at hand due to the relationship between observations, by using a spectral decomposition of a selected distance and the corresponding principal coordinates. Unconditional simulations are performed to validate the efficiency of the proposed method under a variety of scenarios, and the results show a statistical gain when compared with a more traditional detrending method. Finally, our method is illustrated with two applications: earth’s average daily temperatures in Croatia, and calcium concentration measured at a depth of 0–20 cm in Brazil.</abstract><cop>New York</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s13253-020-00395-2</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-0296-4511</orcidid><orcidid>https://orcid.org/0000-0002-2868-7604</orcidid><orcidid>https://orcid.org/0000-0002-5598-1913</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1085-7117
ispartof Journal of agricultural, biological, and environmental statistics, 2020-09, Vol.25 (3), p.315-338
issn 1085-7117
1537-2693
language eng
recordid cdi_proquest_journals_2431607301
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; SpringerLink Journals - AutoHoldings
subjects Agriculture
Biostatistics
Calcium
Computer simulation
Continuity (mathematics)
Covariance
Depth perception
Environmental science
Fields (mathematics)
Health Sciences
Interpolation
Mathematics and Statistics
Medicine
Monitoring/Environmental Analysis
Statistics
Statistics for Life Sciences
title A Distance-based Method for Spatial Prediction in the Presence of Trend
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Distance-based%20Method%20for%20Spatial%20Prediction%20in%20the%20Presence%20of%20Trend&rft.jtitle=Journal%20of%20agricultural,%20biological,%20and%20environmental%20statistics&rft.au=Melo,%20Carlos%20E.&rft.date=2020-09-01&rft.volume=25&rft.issue=3&rft.spage=315&rft.epage=338&rft.pages=315-338&rft.issn=1085-7117&rft.eissn=1537-2693&rft_id=info:doi/10.1007/s13253-020-00395-2&rft_dat=%3Cgale_proqu%3EA632020321%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431607301&rft_id=info:pmid/&rft_galeid=A632020321&rft_jstor_id=48736990&rfr_iscdi=true