A Distance-based Method for Spatial Prediction in the Presence of Trend
A new method based on distances for modeling continuous random data in Gaussian random fields is presented. In non-stationary cases in which a trend or drift is present, dealing with information in regionalized mixed variables (including categorical, discrete and continuous variables) is common in g...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural, biological, and environmental statistics biological, and environmental statistics, 2020-09, Vol.25 (3), p.315-338 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 338 |
---|---|
container_issue | 3 |
container_start_page | 315 |
container_title | Journal of agricultural, biological, and environmental statistics |
container_volume | 25 |
creator | Melo, Carlos E. Mateu, Jorge Melo, Oscar O. |
description | A new method based on distances for modeling continuous random data in Gaussian random fields is presented. In non-stationary cases in which a trend or drift is present, dealing with information in regionalized mixed variables (including categorical, discrete and continuous variables) is common in geosciences and environmental sciences. The proposed distance-based method is used in a geostatistical model to estimate the trend and the covariance structure, which are key features in interpolation and monitoring problems. This strategy takes full advantage of the information at hand due to the relationship between observations, by using a spectral decomposition of a selected distance and the corresponding principal coordinates. Unconditional simulations are performed to validate the efficiency of the proposed method under a variety of scenarios, and the results show a statistical gain when compared with a more traditional detrending method. Finally, our method is illustrated with two applications: earth’s average daily temperatures in Croatia, and calcium concentration measured at a depth of 0–20 cm in Brazil. |
doi_str_mv | 10.1007/s13253-020-00395-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2431607301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632020321</galeid><jstor_id>48736990</jstor_id><sourcerecordid>A632020321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-586c41d979c240824b53027b0d78811d4840e15b59ab48109aa679bbefa2d2eb3</originalsourceid><addsrcrecordid>eNp9kUFrHCEUx6U00GTTL1AoCD3lYPLUcRyPS9KmgYSEJD2LM77ZuGzGjbrQfvu6ndKQS_GgPH4_39M_IZ84nHIAfZa5FEoyEMAApFFMvCOHXEnNRGvk-3qGTjHNuf5AjnJeA3DZgjgkl0t6EXJx04Csdxk9vcHyFD0dY6IPW1eC29C7hD4MJcSJhomWJ9xXMlaHxpE-Jpz8MTkY3Sbjx7_7gvz49vXx_Du7vr28Ol9es0G2qjDVtUPDvdFmEA10oumVBKF78LrrOPdN1wBy1Svj-qbjYJxrtel7HJ3wAnu5IF_me7cpvuwwF7uOuzTVllY0kregZX3agpzO1Mpt0IZpjCW5oS6Pz2GIE46h1petFPXHpNgLJ2-EyhT8WVZul7O9erh_y4qZHVLMOeFotyk8u_TLcrD7NOychq28_ZOGFVWSs5QrPK0wvc79X-vzbK1zielfn6bTsjUG5G-kpJKV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431607301</pqid></control><display><type>article</type><title>A Distance-based Method for Spatial Prediction in the Presence of Trend</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>SpringerLink Journals - AutoHoldings</source><creator>Melo, Carlos E. ; Mateu, Jorge ; Melo, Oscar O.</creator><creatorcontrib>Melo, Carlos E. ; Mateu, Jorge ; Melo, Oscar O.</creatorcontrib><description>A new method based on distances for modeling continuous random data in Gaussian random fields is presented. In non-stationary cases in which a trend or drift is present, dealing with information in regionalized mixed variables (including categorical, discrete and continuous variables) is common in geosciences and environmental sciences. The proposed distance-based method is used in a geostatistical model to estimate the trend and the covariance structure, which are key features in interpolation and monitoring problems. This strategy takes full advantage of the information at hand due to the relationship between observations, by using a spectral decomposition of a selected distance and the corresponding principal coordinates. Unconditional simulations are performed to validate the efficiency of the proposed method under a variety of scenarios, and the results show a statistical gain when compared with a more traditional detrending method. Finally, our method is illustrated with two applications: earth’s average daily temperatures in Croatia, and calcium concentration measured at a depth of 0–20 cm in Brazil.</description><identifier>ISSN: 1085-7117</identifier><identifier>EISSN: 1537-2693</identifier><identifier>DOI: 10.1007/s13253-020-00395-2</identifier><language>eng</language><publisher>New York: Springer Science + Business Media</publisher><subject>Agriculture ; Biostatistics ; Calcium ; Computer simulation ; Continuity (mathematics) ; Covariance ; Depth perception ; Environmental science ; Fields (mathematics) ; Health Sciences ; Interpolation ; Mathematics and Statistics ; Medicine ; Monitoring/Environmental Analysis ; Statistics ; Statistics for Life Sciences</subject><ispartof>Journal of agricultural, biological, and environmental statistics, 2020-09, Vol.25 (3), p.315-338</ispartof><rights>2020 International Biometric Society</rights><rights>International Biometric Society 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>International Biometric Society 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-586c41d979c240824b53027b0d78811d4840e15b59ab48109aa679bbefa2d2eb3</cites><orcidid>0000-0002-0296-4511 ; 0000-0002-2868-7604 ; 0000-0002-5598-1913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48736990$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48736990$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,41469,42538,51300,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>Melo, Carlos E.</creatorcontrib><creatorcontrib>Mateu, Jorge</creatorcontrib><creatorcontrib>Melo, Oscar O.</creatorcontrib><title>A Distance-based Method for Spatial Prediction in the Presence of Trend</title><title>Journal of agricultural, biological, and environmental statistics</title><addtitle>JABES</addtitle><description>A new method based on distances for modeling continuous random data in Gaussian random fields is presented. In non-stationary cases in which a trend or drift is present, dealing with information in regionalized mixed variables (including categorical, discrete and continuous variables) is common in geosciences and environmental sciences. The proposed distance-based method is used in a geostatistical model to estimate the trend and the covariance structure, which are key features in interpolation and monitoring problems. This strategy takes full advantage of the information at hand due to the relationship between observations, by using a spectral decomposition of a selected distance and the corresponding principal coordinates. Unconditional simulations are performed to validate the efficiency of the proposed method under a variety of scenarios, and the results show a statistical gain when compared with a more traditional detrending method. Finally, our method is illustrated with two applications: earth’s average daily temperatures in Croatia, and calcium concentration measured at a depth of 0–20 cm in Brazil.</description><subject>Agriculture</subject><subject>Biostatistics</subject><subject>Calcium</subject><subject>Computer simulation</subject><subject>Continuity (mathematics)</subject><subject>Covariance</subject><subject>Depth perception</subject><subject>Environmental science</subject><subject>Fields (mathematics)</subject><subject>Health Sciences</subject><subject>Interpolation</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Monitoring/Environmental Analysis</subject><subject>Statistics</subject><subject>Statistics for Life Sciences</subject><issn>1085-7117</issn><issn>1537-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrHCEUx6U00GTTL1AoCD3lYPLUcRyPS9KmgYSEJD2LM77ZuGzGjbrQfvu6ndKQS_GgPH4_39M_IZ84nHIAfZa5FEoyEMAApFFMvCOHXEnNRGvk-3qGTjHNuf5AjnJeA3DZgjgkl0t6EXJx04Csdxk9vcHyFD0dY6IPW1eC29C7hD4MJcSJhomWJ9xXMlaHxpE-Jpz8MTkY3Sbjx7_7gvz49vXx_Du7vr28Ol9es0G2qjDVtUPDvdFmEA10oumVBKF78LrrOPdN1wBy1Svj-qbjYJxrtel7HJ3wAnu5IF_me7cpvuwwF7uOuzTVllY0kregZX3agpzO1Mpt0IZpjCW5oS6Pz2GIE46h1petFPXHpNgLJ2-EyhT8WVZul7O9erh_y4qZHVLMOeFotyk8u_TLcrD7NOychq28_ZOGFVWSs5QrPK0wvc79X-vzbK1zielfn6bTsjUG5G-kpJKV</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Melo, Carlos E.</creator><creator>Mateu, Jorge</creator><creator>Melo, Oscar O.</creator><general>Springer Science + Business Media</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0002-0296-4511</orcidid><orcidid>https://orcid.org/0000-0002-2868-7604</orcidid><orcidid>https://orcid.org/0000-0002-5598-1913</orcidid></search><sort><creationdate>20200901</creationdate><title>A Distance-based Method for Spatial Prediction in the Presence of Trend</title><author>Melo, Carlos E. ; Mateu, Jorge ; Melo, Oscar O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-586c41d979c240824b53027b0d78811d4840e15b59ab48109aa679bbefa2d2eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agriculture</topic><topic>Biostatistics</topic><topic>Calcium</topic><topic>Computer simulation</topic><topic>Continuity (mathematics)</topic><topic>Covariance</topic><topic>Depth perception</topic><topic>Environmental science</topic><topic>Fields (mathematics)</topic><topic>Health Sciences</topic><topic>Interpolation</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Monitoring/Environmental Analysis</topic><topic>Statistics</topic><topic>Statistics for Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melo, Carlos E.</creatorcontrib><creatorcontrib>Mateu, Jorge</creatorcontrib><creatorcontrib>Melo, Oscar O.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melo, Carlos E.</au><au>Mateu, Jorge</au><au>Melo, Oscar O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Distance-based Method for Spatial Prediction in the Presence of Trend</atitle><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle><stitle>JABES</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>25</volume><issue>3</issue><spage>315</spage><epage>338</epage><pages>315-338</pages><issn>1085-7117</issn><eissn>1537-2693</eissn><abstract>A new method based on distances for modeling continuous random data in Gaussian random fields is presented. In non-stationary cases in which a trend or drift is present, dealing with information in regionalized mixed variables (including categorical, discrete and continuous variables) is common in geosciences and environmental sciences. The proposed distance-based method is used in a geostatistical model to estimate the trend and the covariance structure, which are key features in interpolation and monitoring problems. This strategy takes full advantage of the information at hand due to the relationship between observations, by using a spectral decomposition of a selected distance and the corresponding principal coordinates. Unconditional simulations are performed to validate the efficiency of the proposed method under a variety of scenarios, and the results show a statistical gain when compared with a more traditional detrending method. Finally, our method is illustrated with two applications: earth’s average daily temperatures in Croatia, and calcium concentration measured at a depth of 0–20 cm in Brazil.</abstract><cop>New York</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s13253-020-00395-2</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-0296-4511</orcidid><orcidid>https://orcid.org/0000-0002-2868-7604</orcidid><orcidid>https://orcid.org/0000-0002-5598-1913</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-7117 |
ispartof | Journal of agricultural, biological, and environmental statistics, 2020-09, Vol.25 (3), p.315-338 |
issn | 1085-7117 1537-2693 |
language | eng |
recordid | cdi_proquest_journals_2431607301 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; SpringerLink Journals - AutoHoldings |
subjects | Agriculture Biostatistics Calcium Computer simulation Continuity (mathematics) Covariance Depth perception Environmental science Fields (mathematics) Health Sciences Interpolation Mathematics and Statistics Medicine Monitoring/Environmental Analysis Statistics Statistics for Life Sciences |
title | A Distance-based Method for Spatial Prediction in the Presence of Trend |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Distance-based%20Method%20for%20Spatial%20Prediction%20in%20the%20Presence%20of%20Trend&rft.jtitle=Journal%20of%20agricultural,%20biological,%20and%20environmental%20statistics&rft.au=Melo,%20Carlos%20E.&rft.date=2020-09-01&rft.volume=25&rft.issue=3&rft.spage=315&rft.epage=338&rft.pages=315-338&rft.issn=1085-7117&rft.eissn=1537-2693&rft_id=info:doi/10.1007/s13253-020-00395-2&rft_dat=%3Cgale_proqu%3EA632020321%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431607301&rft_id=info:pmid/&rft_galeid=A632020321&rft_jstor_id=48736990&rfr_iscdi=true |