Efficient Removal of Bisphenol A Using Nitrogen-Doped Graphene-Like Plates from Green Petroleum Coke

Green petroleum coke, a form of industrial waste produced in the oil-refining process, was used to synthesize nitrogen-doped graphene-like plates (N-GLPs) together with melamine. In this study, characterization and batch experiments were performed to elucidate the interaction mechanism of N-GLPs and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2020-08, Vol.25 (15), p.3543, Article 3543
Hauptverfasser: Liu, Zhipeng, Wang, Quanyong, Zhang, Bei, Wu, Tao, Li, Yujiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page 3543
container_title Molecules (Basel, Switzerland)
container_volume 25
creator Liu, Zhipeng
Wang, Quanyong
Zhang, Bei
Wu, Tao
Li, Yujiang
description Green petroleum coke, a form of industrial waste produced in the oil-refining process, was used to synthesize nitrogen-doped graphene-like plates (N-GLPs) together with melamine. In this study, characterization and batch experiments were performed to elucidate the interaction mechanism of N-GLPs and bisphenol A (BPA). Structural analysis of N-GLPs, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS), showed an obvious graphene-like structure and successful nitrogen doping. In addition, compared with 8.0 m(2)/g for green petroleum coke, the BET surface area of N-GLPs markedly increased to 96.6 m(2)/g. The influences of various factors, including contact time, temperature, and initial pH on BPA removal efficiency were investigated. It was found that 92.0% of BPA was successfully removed by N-GLPs at 50 degrees C. Based on the adsorption experiments, it was shown that electrostatic attraction, hydrogen bonding, and pi-pi interaction enhanced the adsorption capacity of N-GLPs for BPA. According to the thermodynamic data, the adsorption process was spontaneous, physical, and endothermic in nature. Therefore, N-GLPs are efficient adsorbent material to remove BPA from wastewater.
doi_str_mv 10.3390/molecules25153543
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2431391415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0d70e0ef48b94b68bbbe174bc9e3d59d</doaj_id><sourcerecordid>2431391415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-b2893fddbeb43a4f24561e3bf23a697c897f413f801477a8f42e05b7a38764e53</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhSMEoqXwA7ggSxxRwPbYcXJBKqGUSiuoED1bdjLeepvEi50U8e_xsmXVigsnjzzfezP2K4qXjL4FaOi7MQzYLQMmLpkEKeBRccwEpyVQ0Ty-Vx8Vz1LaUMqZYPJpcQRcyUpwflz0Z875zuM0k284hlszkODIB5-21ziFgZySq-SnNfni5xjWOJUfwxZ7ch7NDsBy5W-QXA5mxkRcDGPuIE7kEjM-4DKSNtzg8-KJM0PCF3fnSXH16ex7-7lcfT2_aE9XZScamEvL6wZc31u0AoxwXMiKIVjHwVSN6upGOcHA1ZQJpUztBEcqrTJQq0qghJPiYu_bB7PR2-hHE3_pYLz-cxHiWps4-25ATXtFkaITtW2ErWprLTIlbNcg9LLps9f7vdd2sSP2Xf6haIYHpg87k7_W63CrlQBZgcgGr-8MYvixYJr1Jixxyu_XXACDZpdFptie6mJIKaI7TGBU70LW_4ScNa_ur3ZQ_E01A_Ue-Ik2uLSLt8MDRimVlWIgea4oa_1sZh-mNizTnKVv_l8KvwHQZsZF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431391415</pqid></control><display><type>article</type><title>Efficient Removal of Bisphenol A Using Nitrogen-Doped Graphene-Like Plates from Green Petroleum Coke</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Zhipeng ; Wang, Quanyong ; Zhang, Bei ; Wu, Tao ; Li, Yujiang</creator><creatorcontrib>Liu, Zhipeng ; Wang, Quanyong ; Zhang, Bei ; Wu, Tao ; Li, Yujiang</creatorcontrib><description>Green petroleum coke, a form of industrial waste produced in the oil-refining process, was used to synthesize nitrogen-doped graphene-like plates (N-GLPs) together with melamine. In this study, characterization and batch experiments were performed to elucidate the interaction mechanism of N-GLPs and bisphenol A (BPA). Structural analysis of N-GLPs, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS), showed an obvious graphene-like structure and successful nitrogen doping. In addition, compared with 8.0 m(2)/g for green petroleum coke, the BET surface area of N-GLPs markedly increased to 96.6 m(2)/g. The influences of various factors, including contact time, temperature, and initial pH on BPA removal efficiency were investigated. It was found that 92.0% of BPA was successfully removed by N-GLPs at 50 degrees C. Based on the adsorption experiments, it was shown that electrostatic attraction, hydrogen bonding, and pi-pi interaction enhanced the adsorption capacity of N-GLPs for BPA. According to the thermodynamic data, the adsorption process was spontaneous, physical, and endothermic in nature. Therefore, N-GLPs are efficient adsorbent material to remove BPA from wastewater.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules25153543</identifier><identifier>PMID: 32756422</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Adsorbents ; Adsorption ; Benzhydryl Compounds - isolation &amp; purification ; Biochemistry &amp; Molecular Biology ; Bisphenol A ; Carbon ; Chemistry ; Chemistry, Multidisciplinary ; Coke ; Crystal structure ; Efficiency ; electrostatic attraction ; Fourier analysis ; Fourier transforms ; Graphene ; Graphite - chemistry ; green petroleum coke ; Hydrocarbons ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Industrial wastes ; Infrared spectroscopy ; Life Sciences &amp; Biomedicine ; Melamine ; Nitrogen ; Nitrogen - chemistry ; nitrogen doping ; Petroleum ; Petroleum - analysis ; Petroleum coke ; Phenols - isolation &amp; purification ; Photoelectron spectroscopy ; Photoelectrons ; Physical Sciences ; Plates ; Porosity ; Refineries ; Scanning electron microscopy ; Science &amp; Technology ; Spectrum analysis ; Static Electricity ; Structural analysis ; Temperature ; Thermodynamics ; Vibration ; Wastewater ; Wastewater treatment ; Water Pollutants, Chemical - chemistry ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Molecules (Basel, Switzerland), 2020-08, Vol.25 (15), p.3543, Article 3543</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000567135200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c493t-b2893fddbeb43a4f24561e3bf23a697c897f413f801477a8f42e05b7a38764e53</citedby><cites>FETCH-LOGICAL-c493t-b2893fddbeb43a4f24561e3bf23a697c897f413f801477a8f42e05b7a38764e53</cites><orcidid>0000-0002-3230-7387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435634/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435634/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32756422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Zhipeng</creatorcontrib><creatorcontrib>Wang, Quanyong</creatorcontrib><creatorcontrib>Zhang, Bei</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Li, Yujiang</creatorcontrib><title>Efficient Removal of Bisphenol A Using Nitrogen-Doped Graphene-Like Plates from Green Petroleum Coke</title><title>Molecules (Basel, Switzerland)</title><addtitle>MOLECULES</addtitle><addtitle>Molecules</addtitle><description>Green petroleum coke, a form of industrial waste produced in the oil-refining process, was used to synthesize nitrogen-doped graphene-like plates (N-GLPs) together with melamine. In this study, characterization and batch experiments were performed to elucidate the interaction mechanism of N-GLPs and bisphenol A (BPA). Structural analysis of N-GLPs, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS), showed an obvious graphene-like structure and successful nitrogen doping. In addition, compared with 8.0 m(2)/g for green petroleum coke, the BET surface area of N-GLPs markedly increased to 96.6 m(2)/g. The influences of various factors, including contact time, temperature, and initial pH on BPA removal efficiency were investigated. It was found that 92.0% of BPA was successfully removed by N-GLPs at 50 degrees C. Based on the adsorption experiments, it was shown that electrostatic attraction, hydrogen bonding, and pi-pi interaction enhanced the adsorption capacity of N-GLPs for BPA. According to the thermodynamic data, the adsorption process was spontaneous, physical, and endothermic in nature. Therefore, N-GLPs are efficient adsorbent material to remove BPA from wastewater.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Benzhydryl Compounds - isolation &amp; purification</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Bisphenol A</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Coke</subject><subject>Crystal structure</subject><subject>Efficiency</subject><subject>electrostatic attraction</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>green petroleum coke</subject><subject>Hydrocarbons</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen-Ion Concentration</subject><subject>Industrial wastes</subject><subject>Infrared spectroscopy</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Melamine</subject><subject>Nitrogen</subject><subject>Nitrogen - chemistry</subject><subject>nitrogen doping</subject><subject>Petroleum</subject><subject>Petroleum - analysis</subject><subject>Petroleum coke</subject><subject>Phenols - isolation &amp; purification</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Physical Sciences</subject><subject>Plates</subject><subject>Porosity</subject><subject>Refineries</subject><subject>Scanning electron microscopy</subject><subject>Science &amp; Technology</subject><subject>Spectrum analysis</subject><subject>Static Electricity</subject><subject>Structural analysis</subject><subject>Temperature</subject><subject>Thermodynamics</subject><subject>Vibration</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUFv1DAQhSMEoqXwA7ggSxxRwPbYcXJBKqGUSiuoED1bdjLeepvEi50U8e_xsmXVigsnjzzfezP2K4qXjL4FaOi7MQzYLQMmLpkEKeBRccwEpyVQ0Ty-Vx8Vz1LaUMqZYPJpcQRcyUpwflz0Z875zuM0k284hlszkODIB5-21ziFgZySq-SnNfni5xjWOJUfwxZ7ch7NDsBy5W-QXA5mxkRcDGPuIE7kEjM-4DKSNtzg8-KJM0PCF3fnSXH16ex7-7lcfT2_aE9XZScamEvL6wZc31u0AoxwXMiKIVjHwVSN6upGOcHA1ZQJpUztBEcqrTJQq0qghJPiYu_bB7PR2-hHE3_pYLz-cxHiWps4-25ATXtFkaITtW2ErWprLTIlbNcg9LLps9f7vdd2sSP2Xf6haIYHpg87k7_W63CrlQBZgcgGr-8MYvixYJr1Jixxyu_XXACDZpdFptie6mJIKaI7TGBU70LW_4ScNa_ur3ZQ_E01A_Ue-Ik2uLSLt8MDRimVlWIgea4oa_1sZh-mNizTnKVv_l8KvwHQZsZF</recordid><startdate>20200803</startdate><enddate>20200803</enddate><creator>Liu, Zhipeng</creator><creator>Wang, Quanyong</creator><creator>Zhang, Bei</creator><creator>Wu, Tao</creator><creator>Li, Yujiang</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3230-7387</orcidid></search><sort><creationdate>20200803</creationdate><title>Efficient Removal of Bisphenol A Using Nitrogen-Doped Graphene-Like Plates from Green Petroleum Coke</title><author>Liu, Zhipeng ; Wang, Quanyong ; Zhang, Bei ; Wu, Tao ; Li, Yujiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-b2893fddbeb43a4f24561e3bf23a697c897f413f801477a8f42e05b7a38764e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Benzhydryl Compounds - isolation &amp; purification</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Bisphenol A</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Coke</topic><topic>Crystal structure</topic><topic>Efficiency</topic><topic>electrostatic attraction</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>green petroleum coke</topic><topic>Hydrocarbons</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen-Ion Concentration</topic><topic>Industrial wastes</topic><topic>Infrared spectroscopy</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Melamine</topic><topic>Nitrogen</topic><topic>Nitrogen - chemistry</topic><topic>nitrogen doping</topic><topic>Petroleum</topic><topic>Petroleum - analysis</topic><topic>Petroleum coke</topic><topic>Phenols - isolation &amp; purification</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Physical Sciences</topic><topic>Plates</topic><topic>Porosity</topic><topic>Refineries</topic><topic>Scanning electron microscopy</topic><topic>Science &amp; Technology</topic><topic>Spectrum analysis</topic><topic>Static Electricity</topic><topic>Structural analysis</topic><topic>Temperature</topic><topic>Thermodynamics</topic><topic>Vibration</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhipeng</creatorcontrib><creatorcontrib>Wang, Quanyong</creatorcontrib><creatorcontrib>Zhang, Bei</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Li, Yujiang</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhipeng</au><au>Wang, Quanyong</au><au>Zhang, Bei</au><au>Wu, Tao</au><au>Li, Yujiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Removal of Bisphenol A Using Nitrogen-Doped Graphene-Like Plates from Green Petroleum Coke</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><stitle>MOLECULES</stitle><addtitle>Molecules</addtitle><date>2020-08-03</date><risdate>2020</risdate><volume>25</volume><issue>15</issue><spage>3543</spage><pages>3543-</pages><artnum>3543</artnum><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Green petroleum coke, a form of industrial waste produced in the oil-refining process, was used to synthesize nitrogen-doped graphene-like plates (N-GLPs) together with melamine. In this study, characterization and batch experiments were performed to elucidate the interaction mechanism of N-GLPs and bisphenol A (BPA). Structural analysis of N-GLPs, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS), showed an obvious graphene-like structure and successful nitrogen doping. In addition, compared with 8.0 m(2)/g for green petroleum coke, the BET surface area of N-GLPs markedly increased to 96.6 m(2)/g. The influences of various factors, including contact time, temperature, and initial pH on BPA removal efficiency were investigated. It was found that 92.0% of BPA was successfully removed by N-GLPs at 50 degrees C. Based on the adsorption experiments, it was shown that electrostatic attraction, hydrogen bonding, and pi-pi interaction enhanced the adsorption capacity of N-GLPs for BPA. According to the thermodynamic data, the adsorption process was spontaneous, physical, and endothermic in nature. Therefore, N-GLPs are efficient adsorbent material to remove BPA from wastewater.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>32756422</pmid><doi>10.3390/molecules25153543</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3230-7387</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2020-08, Vol.25 (15), p.3543, Article 3543
issn 1420-3049
1420-3049
language eng
recordid cdi_proquest_journals_2431391415
source MEDLINE; DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adsorbents
Adsorption
Benzhydryl Compounds - isolation & purification
Biochemistry & Molecular Biology
Bisphenol A
Carbon
Chemistry
Chemistry, Multidisciplinary
Coke
Crystal structure
Efficiency
electrostatic attraction
Fourier analysis
Fourier transforms
Graphene
Graphite - chemistry
green petroleum coke
Hydrocarbons
Hydrogen Bonding
Hydrogen-Ion Concentration
Industrial wastes
Infrared spectroscopy
Life Sciences & Biomedicine
Melamine
Nitrogen
Nitrogen - chemistry
nitrogen doping
Petroleum
Petroleum - analysis
Petroleum coke
Phenols - isolation & purification
Photoelectron spectroscopy
Photoelectrons
Physical Sciences
Plates
Porosity
Refineries
Scanning electron microscopy
Science & Technology
Spectrum analysis
Static Electricity
Structural analysis
Temperature
Thermodynamics
Vibration
Wastewater
Wastewater treatment
Water Pollutants, Chemical - chemistry
X ray photoelectron spectroscopy
X-ray diffraction
title Efficient Removal of Bisphenol A Using Nitrogen-Doped Graphene-Like Plates from Green Petroleum Coke
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T23%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Removal%20of%20Bisphenol%20A%20Using%20Nitrogen-Doped%20Graphene-Like%20Plates%20from%20Green%20Petroleum%20Coke&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Liu,%20Zhipeng&rft.date=2020-08-03&rft.volume=25&rft.issue=15&rft.spage=3543&rft.pages=3543-&rft.artnum=3543&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules25153543&rft_dat=%3Cproquest_cross%3E2431391415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431391415&rft_id=info:pmid/32756422&rft_doaj_id=oai_doaj_org_article_0d70e0ef48b94b68bbbe174bc9e3d59d&rfr_iscdi=true