Vertically aligned carbon nanotube arrays growth modeling at different temperatures and pressures in reactor

A model for the growth of carbon nanotubes was developed and the calculations for this model were compared with experiment. Experimental growth of carbon nanotubes arrays was carried out by the CVD method in a stream of acetylene, ammonia and argon at temperatures from 550 to 950 °C. A nickel film o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diamond and related materials 2020-03, Vol.103, p.107665, Article 107665
Hauptverfasser: Bulyarskiy, Sergey V., Gusarov, George G., Lakalin, Aleksandr V., Molodenskiy, Mikhail S., Pavlov, Aleksandr A., Ryazanov, Roman M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107665
container_title Diamond and related materials
container_volume 103
creator Bulyarskiy, Sergey V.
Gusarov, George G.
Lakalin, Aleksandr V.
Molodenskiy, Mikhail S.
Pavlov, Aleksandr A.
Ryazanov, Roman M.
description A model for the growth of carbon nanotubes was developed and the calculations for this model were compared with experiment. Experimental growth of carbon nanotubes arrays was carried out by the CVD method in a stream of acetylene, ammonia and argon at temperatures from 550 to 950 °C. A nickel film of 4 nm thickness on the surface of titanium nitride was used as a catalyst. The model takes into account the pyrolysis of hydrocarbons on the surface of the catalyst nanoparticles, the formation of a barrier layer on its surface, which slows down and stops the growth of the nanotube array, the interaction of the substance of the buffer layer with carbon in the catalyst nanoparticle. When developing the model, the mechanisms of individual processes were considered and the temperature dependences of the kinetic coefficients, which describe the growth of nanotubes, were obtained. It is these dependences that show a good agreement between the calculations and the experiment. [Display omitted] •A model for the growth of carbon nanotubes and comparison with experiment•Growth experiments of carbon nanotubes with a nickel film as catalyst•Temperature dependences of kinetic coefficients for the growth of nanotubes•Thermodynamic method applied to nanotube growth modeling•Temperature dependence for carbon nanotube array height
doi_str_mv 10.1016/j.diamond.2019.107665
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2431252949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963519306132</els_id><sourcerecordid>2431252949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-402c357694fc04466b027d3c5ba2d69b60ec1a491f71b1e24eb85f20e22bc3503</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QQi4nppkZjLNSqT4goIbdRsyyZ2aMk3qTUbpv3dqu3d1H5xzL-cj5JqzGWdc3q5nzptNDG4mGFfjrpGyPiETPm9UwZgUp2TClKgLJcv6nFyktGaMC1XxCek_ALO3pu931PR-FcBRa7CNgQYTYh5aoAbR7BJdYfzJn3QTHfQ-rKjJ1PmuA4SQaYbNFtDkASFRExzdjk36m3ygCMbmiJfkrDN9gqtjnZL3x4e3xXOxfH16WdwvC1uWTS4qJmxZN1JVnWVVJWXLRONKW7dGOKlaycByUyneNbzlICpo53UnGAjRjkZWTsnN4e4W49cAKet1HDCML7WoSi7qMbsaVfVBZTGmhNDpLfqNwZ3mTO_B6rU-gtV7sPoAdvTdHXwwRvj2gDpZD8GC8wg2axf9Pxd-AfunhbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431252949</pqid></control><display><type>article</type><title>Vertically aligned carbon nanotube arrays growth modeling at different temperatures and pressures in reactor</title><source>Elsevier ScienceDirect Journals</source><creator>Bulyarskiy, Sergey V. ; Gusarov, George G. ; Lakalin, Aleksandr V. ; Molodenskiy, Mikhail S. ; Pavlov, Aleksandr A. ; Ryazanov, Roman M.</creator><creatorcontrib>Bulyarskiy, Sergey V. ; Gusarov, George G. ; Lakalin, Aleksandr V. ; Molodenskiy, Mikhail S. ; Pavlov, Aleksandr A. ; Ryazanov, Roman M.</creatorcontrib><description>A model for the growth of carbon nanotubes was developed and the calculations for this model were compared with experiment. Experimental growth of carbon nanotubes arrays was carried out by the CVD method in a stream of acetylene, ammonia and argon at temperatures from 550 to 950 °C. A nickel film of 4 nm thickness on the surface of titanium nitride was used as a catalyst. The model takes into account the pyrolysis of hydrocarbons on the surface of the catalyst nanoparticles, the formation of a barrier layer on its surface, which slows down and stops the growth of the nanotube array, the interaction of the substance of the buffer layer with carbon in the catalyst nanoparticle. When developing the model, the mechanisms of individual processes were considered and the temperature dependences of the kinetic coefficients, which describe the growth of nanotubes, were obtained. It is these dependences that show a good agreement between the calculations and the experiment. [Display omitted] •A model for the growth of carbon nanotubes and comparison with experiment•Growth experiments of carbon nanotubes with a nickel film as catalyst•Temperature dependences of kinetic coefficients for the growth of nanotubes•Thermodynamic method applied to nanotube growth modeling•Temperature dependence for carbon nanotube array height</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2019.107665</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acetylene ; Ammonia ; Argon ; Arrays ; Barrier layers ; Buffer layers ; Carbon ; Carbon nanotubes ; Catalysts ; Kinetic coefficients ; Nanoparticles ; Pyrolysis ; Thickness ; Titanium nitride</subject><ispartof>Diamond and related materials, 2020-03, Vol.103, p.107665, Article 107665</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-402c357694fc04466b027d3c5ba2d69b60ec1a491f71b1e24eb85f20e22bc3503</citedby><cites>FETCH-LOGICAL-c337t-402c357694fc04466b027d3c5ba2d69b60ec1a491f71b1e24eb85f20e22bc3503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925963519306132$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Bulyarskiy, Sergey V.</creatorcontrib><creatorcontrib>Gusarov, George G.</creatorcontrib><creatorcontrib>Lakalin, Aleksandr V.</creatorcontrib><creatorcontrib>Molodenskiy, Mikhail S.</creatorcontrib><creatorcontrib>Pavlov, Aleksandr A.</creatorcontrib><creatorcontrib>Ryazanov, Roman M.</creatorcontrib><title>Vertically aligned carbon nanotube arrays growth modeling at different temperatures and pressures in reactor</title><title>Diamond and related materials</title><description>A model for the growth of carbon nanotubes was developed and the calculations for this model were compared with experiment. Experimental growth of carbon nanotubes arrays was carried out by the CVD method in a stream of acetylene, ammonia and argon at temperatures from 550 to 950 °C. A nickel film of 4 nm thickness on the surface of titanium nitride was used as a catalyst. The model takes into account the pyrolysis of hydrocarbons on the surface of the catalyst nanoparticles, the formation of a barrier layer on its surface, which slows down and stops the growth of the nanotube array, the interaction of the substance of the buffer layer with carbon in the catalyst nanoparticle. When developing the model, the mechanisms of individual processes were considered and the temperature dependences of the kinetic coefficients, which describe the growth of nanotubes, were obtained. It is these dependences that show a good agreement between the calculations and the experiment. [Display omitted] •A model for the growth of carbon nanotubes and comparison with experiment•Growth experiments of carbon nanotubes with a nickel film as catalyst•Temperature dependences of kinetic coefficients for the growth of nanotubes•Thermodynamic method applied to nanotube growth modeling•Temperature dependence for carbon nanotube array height</description><subject>Acetylene</subject><subject>Ammonia</subject><subject>Argon</subject><subject>Arrays</subject><subject>Barrier layers</subject><subject>Buffer layers</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Catalysts</subject><subject>Kinetic coefficients</subject><subject>Nanoparticles</subject><subject>Pyrolysis</subject><subject>Thickness</subject><subject>Titanium nitride</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QQi4nppkZjLNSqT4goIbdRsyyZ2aMk3qTUbpv3dqu3d1H5xzL-cj5JqzGWdc3q5nzptNDG4mGFfjrpGyPiETPm9UwZgUp2TClKgLJcv6nFyktGaMC1XxCek_ALO3pu931PR-FcBRa7CNgQYTYh5aoAbR7BJdYfzJn3QTHfQ-rKjJ1PmuA4SQaYbNFtDkASFRExzdjk36m3ygCMbmiJfkrDN9gqtjnZL3x4e3xXOxfH16WdwvC1uWTS4qJmxZN1JVnWVVJWXLRONKW7dGOKlaycByUyneNbzlICpo53UnGAjRjkZWTsnN4e4W49cAKet1HDCML7WoSi7qMbsaVfVBZTGmhNDpLfqNwZ3mTO_B6rU-gtV7sPoAdvTdHXwwRvj2gDpZD8GC8wg2axf9Pxd-AfunhbQ</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Bulyarskiy, Sergey V.</creator><creator>Gusarov, George G.</creator><creator>Lakalin, Aleksandr V.</creator><creator>Molodenskiy, Mikhail S.</creator><creator>Pavlov, Aleksandr A.</creator><creator>Ryazanov, Roman M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202003</creationdate><title>Vertically aligned carbon nanotube arrays growth modeling at different temperatures and pressures in reactor</title><author>Bulyarskiy, Sergey V. ; Gusarov, George G. ; Lakalin, Aleksandr V. ; Molodenskiy, Mikhail S. ; Pavlov, Aleksandr A. ; Ryazanov, Roman M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-402c357694fc04466b027d3c5ba2d69b60ec1a491f71b1e24eb85f20e22bc3503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetylene</topic><topic>Ammonia</topic><topic>Argon</topic><topic>Arrays</topic><topic>Barrier layers</topic><topic>Buffer layers</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Catalysts</topic><topic>Kinetic coefficients</topic><topic>Nanoparticles</topic><topic>Pyrolysis</topic><topic>Thickness</topic><topic>Titanium nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bulyarskiy, Sergey V.</creatorcontrib><creatorcontrib>Gusarov, George G.</creatorcontrib><creatorcontrib>Lakalin, Aleksandr V.</creatorcontrib><creatorcontrib>Molodenskiy, Mikhail S.</creatorcontrib><creatorcontrib>Pavlov, Aleksandr A.</creatorcontrib><creatorcontrib>Ryazanov, Roman M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bulyarskiy, Sergey V.</au><au>Gusarov, George G.</au><au>Lakalin, Aleksandr V.</au><au>Molodenskiy, Mikhail S.</au><au>Pavlov, Aleksandr A.</au><au>Ryazanov, Roman M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertically aligned carbon nanotube arrays growth modeling at different temperatures and pressures in reactor</atitle><jtitle>Diamond and related materials</jtitle><date>2020-03</date><risdate>2020</risdate><volume>103</volume><spage>107665</spage><pages>107665-</pages><artnum>107665</artnum><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>A model for the growth of carbon nanotubes was developed and the calculations for this model were compared with experiment. Experimental growth of carbon nanotubes arrays was carried out by the CVD method in a stream of acetylene, ammonia and argon at temperatures from 550 to 950 °C. A nickel film of 4 nm thickness on the surface of titanium nitride was used as a catalyst. The model takes into account the pyrolysis of hydrocarbons on the surface of the catalyst nanoparticles, the formation of a barrier layer on its surface, which slows down and stops the growth of the nanotube array, the interaction of the substance of the buffer layer with carbon in the catalyst nanoparticle. When developing the model, the mechanisms of individual processes were considered and the temperature dependences of the kinetic coefficients, which describe the growth of nanotubes, were obtained. It is these dependences that show a good agreement between the calculations and the experiment. [Display omitted] •A model for the growth of carbon nanotubes and comparison with experiment•Growth experiments of carbon nanotubes with a nickel film as catalyst•Temperature dependences of kinetic coefficients for the growth of nanotubes•Thermodynamic method applied to nanotube growth modeling•Temperature dependence for carbon nanotube array height</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2019.107665</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-9635
ispartof Diamond and related materials, 2020-03, Vol.103, p.107665, Article 107665
issn 0925-9635
1879-0062
language eng
recordid cdi_proquest_journals_2431252949
source Elsevier ScienceDirect Journals
subjects Acetylene
Ammonia
Argon
Arrays
Barrier layers
Buffer layers
Carbon
Carbon nanotubes
Catalysts
Kinetic coefficients
Nanoparticles
Pyrolysis
Thickness
Titanium nitride
title Vertically aligned carbon nanotube arrays growth modeling at different temperatures and pressures in reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertically%20aligned%20carbon%20nanotube%20arrays%20growth%20modeling%20at%20different%20temperatures%20and%20pressures%20in%20reactor&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Bulyarskiy,%20Sergey%20V.&rft.date=2020-03&rft.volume=103&rft.spage=107665&rft.pages=107665-&rft.artnum=107665&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2019.107665&rft_dat=%3Cproquest_cross%3E2431252949%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431252949&rft_id=info:pmid/&rft_els_id=S0925963519306132&rfr_iscdi=true