The merging mechanisms of poly(3-hexylthiophene) domains revealed through scanning tunneling microscopy and molecular dynamics simulations
Herein, we in situ track the merging processes of poly(3-hexylthiophene) (P3HT) domains physisorbed onto graphite while keeping the domain structures clearly resolved through scanning tunneling microscopy (STM). The domain shape-fixed, amoeba/worm-like and bridge-mediated merging mechanisms are reve...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2020-03, Vol.191, p.122266, Article 122266 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 122266 |
container_title | Polymer (Guilford) |
container_volume | 191 |
creator | Li, Jin-Kuo Shao, Ming-Yue Yang, Zhi-Yong Guskova, Olga |
description | Herein, we in situ track the merging processes of poly(3-hexylthiophene) (P3HT) domains physisorbed onto graphite while keeping the domain structures clearly resolved through scanning tunneling microscopy (STM). The domain shape-fixed, amoeba/worm-like and bridge-mediated merging mechanisms are revealed. In the domain shape-fixed diffusion, the moving domains obey the principle of the non-continuous random walks. Both diffusive and ballistic-like dynamics are disclosed. Additionally, the asymmetrical domains may show anisotropic movements. In the amoeba-like style, the pseudopodia are formed and changed stochastically while in the worm-like style two permanent parts (head and body) of the domains are formed prior movement and kept fixed in the motions. Finally, the integration of two domains is called a bridge-mediated one, if a small domain is bound to a bigger one directly through a dynamic bridge. The molecular dynamics simulations support the experimental findings of P3HT domain movements and rotations on the graphite surface.
[Display omitted]
•The shape-fixed, amoeba- and worm-like, and bridge-mediated surface motion of P3HT.•The shape-fixed style: a non-continuous random walk; diffusive and ballistic-like stage.•Revealing the anisotropic motion of asymmetrical domains in the shape-fixed style.•In the amoeba-like style, pseudopodia are formed and changed stochastically.•In the worm-like style, head and body part are kept fixed once formed during movements. |
doi_str_mv | 10.1016/j.polymer.2020.122266 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2431251268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386120301051</els_id><sourcerecordid>2431251268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-2805ec5a9b2422df8ddae986d3afae8e70b944f6eed2eee6842b03a83f29c7793</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVoINskPyEg6KU9eCONbK98KiUkTSCQS3oWWmm81mJLrmSH-i_0V0fu5t7TwLx53_AeITecbTnj9e1xO4Z-GTBugUHeAUBdn5ENlztRADT8E9kwJqAQsuYX5HNKR8YYVFBuyN_XDmm2Hpw_5Gk67V0aEg0tXaFfRdHhn6WfOhfGDj1-ozYM2vlEI76h7tHSqYthPnQ0Ge39iplm77H_B3QmhmTCuFDtLR1Cj2budaR28TqLiSY35MXkgk9X5LzVfcLrj3lJfj3cv949Fs8vP5_ufjwXpmRiKkCyCk2lmz2UALaV1mpsZG2FbjVK3LF9U5ZtjWgBEWtZwp4JLUULjdntGnFJvpy4Ywy_Z0yTOoY5-vxSQSk4VBxqma-q09WaIEVs1RjdoOOiOFNr7eqoPmpXa-3qVHv2fT_5MEd4c1lNxqE3aF1EMykb3H8I7xTIksE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431251268</pqid></control><display><type>article</type><title>The merging mechanisms of poly(3-hexylthiophene) domains revealed through scanning tunneling microscopy and molecular dynamics simulations</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Jin-Kuo ; Shao, Ming-Yue ; Yang, Zhi-Yong ; Guskova, Olga</creator><creatorcontrib>Li, Jin-Kuo ; Shao, Ming-Yue ; Yang, Zhi-Yong ; Guskova, Olga</creatorcontrib><description>Herein, we in situ track the merging processes of poly(3-hexylthiophene) (P3HT) domains physisorbed onto graphite while keeping the domain structures clearly resolved through scanning tunneling microscopy (STM). The domain shape-fixed, amoeba/worm-like and bridge-mediated merging mechanisms are revealed. In the domain shape-fixed diffusion, the moving domains obey the principle of the non-continuous random walks. Both diffusive and ballistic-like dynamics are disclosed. Additionally, the asymmetrical domains may show anisotropic movements. In the amoeba-like style, the pseudopodia are formed and changed stochastically while in the worm-like style two permanent parts (head and body) of the domains are formed prior movement and kept fixed in the motions. Finally, the integration of two domains is called a bridge-mediated one, if a small domain is bound to a bigger one directly through a dynamic bridge. The molecular dynamics simulations support the experimental findings of P3HT domain movements and rotations on the graphite surface.
[Display omitted]
•The shape-fixed, amoeba- and worm-like, and bridge-mediated surface motion of P3HT.•The shape-fixed style: a non-continuous random walk; diffusive and ballistic-like stage.•Revealing the anisotropic motion of asymmetrical domains in the shape-fixed style.•In the amoeba-like style, pseudopodia are formed and changed stochastically.•In the worm-like style, head and body part are kept fixed once formed during movements.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2020.122266</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Amoeba ; Domains ; Graphite ; Microscopy ; Molecular dynamics ; Movement ; Poly(3-hexylthiophene) ; Pseudopodia ; Random walk ; Scanning tunneling microscopy ; Surface diffusion ; Tunneling</subject><ispartof>Polymer (Guilford), 2020-03, Vol.191, p.122266, Article 122266</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 16, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-2805ec5a9b2422df8ddae986d3afae8e70b944f6eed2eee6842b03a83f29c7793</citedby><cites>FETCH-LOGICAL-c403t-2805ec5a9b2422df8ddae986d3afae8e70b944f6eed2eee6842b03a83f29c7793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2020.122266$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Li, Jin-Kuo</creatorcontrib><creatorcontrib>Shao, Ming-Yue</creatorcontrib><creatorcontrib>Yang, Zhi-Yong</creatorcontrib><creatorcontrib>Guskova, Olga</creatorcontrib><title>The merging mechanisms of poly(3-hexylthiophene) domains revealed through scanning tunneling microscopy and molecular dynamics simulations</title><title>Polymer (Guilford)</title><description>Herein, we in situ track the merging processes of poly(3-hexylthiophene) (P3HT) domains physisorbed onto graphite while keeping the domain structures clearly resolved through scanning tunneling microscopy (STM). The domain shape-fixed, amoeba/worm-like and bridge-mediated merging mechanisms are revealed. In the domain shape-fixed diffusion, the moving domains obey the principle of the non-continuous random walks. Both diffusive and ballistic-like dynamics are disclosed. Additionally, the asymmetrical domains may show anisotropic movements. In the amoeba-like style, the pseudopodia are formed and changed stochastically while in the worm-like style two permanent parts (head and body) of the domains are formed prior movement and kept fixed in the motions. Finally, the integration of two domains is called a bridge-mediated one, if a small domain is bound to a bigger one directly through a dynamic bridge. The molecular dynamics simulations support the experimental findings of P3HT domain movements and rotations on the graphite surface.
[Display omitted]
•The shape-fixed, amoeba- and worm-like, and bridge-mediated surface motion of P3HT.•The shape-fixed style: a non-continuous random walk; diffusive and ballistic-like stage.•Revealing the anisotropic motion of asymmetrical domains in the shape-fixed style.•In the amoeba-like style, pseudopodia are formed and changed stochastically.•In the worm-like style, head and body part are kept fixed once formed during movements.</description><subject>Amoeba</subject><subject>Domains</subject><subject>Graphite</subject><subject>Microscopy</subject><subject>Molecular dynamics</subject><subject>Movement</subject><subject>Poly(3-hexylthiophene)</subject><subject>Pseudopodia</subject><subject>Random walk</subject><subject>Scanning tunneling microscopy</subject><subject>Surface diffusion</subject><subject>Tunneling</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEFr3DAQhUVoINskPyEg6KU9eCONbK98KiUkTSCQS3oWWmm81mJLrmSH-i_0V0fu5t7TwLx53_AeITecbTnj9e1xO4Z-GTBugUHeAUBdn5ENlztRADT8E9kwJqAQsuYX5HNKR8YYVFBuyN_XDmm2Hpw_5Gk67V0aEg0tXaFfRdHhn6WfOhfGDj1-ozYM2vlEI76h7tHSqYthPnQ0Ge39iplm77H_B3QmhmTCuFDtLR1Cj2budaR28TqLiSY35MXkgk9X5LzVfcLrj3lJfj3cv949Fs8vP5_ufjwXpmRiKkCyCk2lmz2UALaV1mpsZG2FbjVK3LF9U5ZtjWgBEWtZwp4JLUULjdntGnFJvpy4Ywy_Z0yTOoY5-vxSQSk4VBxqma-q09WaIEVs1RjdoOOiOFNr7eqoPmpXa-3qVHv2fT_5MEd4c1lNxqE3aF1EMykb3H8I7xTIksE</recordid><startdate>20200316</startdate><enddate>20200316</enddate><creator>Li, Jin-Kuo</creator><creator>Shao, Ming-Yue</creator><creator>Yang, Zhi-Yong</creator><creator>Guskova, Olga</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20200316</creationdate><title>The merging mechanisms of poly(3-hexylthiophene) domains revealed through scanning tunneling microscopy and molecular dynamics simulations</title><author>Li, Jin-Kuo ; Shao, Ming-Yue ; Yang, Zhi-Yong ; Guskova, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-2805ec5a9b2422df8ddae986d3afae8e70b944f6eed2eee6842b03a83f29c7793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amoeba</topic><topic>Domains</topic><topic>Graphite</topic><topic>Microscopy</topic><topic>Molecular dynamics</topic><topic>Movement</topic><topic>Poly(3-hexylthiophene)</topic><topic>Pseudopodia</topic><topic>Random walk</topic><topic>Scanning tunneling microscopy</topic><topic>Surface diffusion</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jin-Kuo</creatorcontrib><creatorcontrib>Shao, Ming-Yue</creatorcontrib><creatorcontrib>Yang, Zhi-Yong</creatorcontrib><creatorcontrib>Guskova, Olga</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jin-Kuo</au><au>Shao, Ming-Yue</au><au>Yang, Zhi-Yong</au><au>Guskova, Olga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The merging mechanisms of poly(3-hexylthiophene) domains revealed through scanning tunneling microscopy and molecular dynamics simulations</atitle><jtitle>Polymer (Guilford)</jtitle><date>2020-03-16</date><risdate>2020</risdate><volume>191</volume><spage>122266</spage><pages>122266-</pages><artnum>122266</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Herein, we in situ track the merging processes of poly(3-hexylthiophene) (P3HT) domains physisorbed onto graphite while keeping the domain structures clearly resolved through scanning tunneling microscopy (STM). The domain shape-fixed, amoeba/worm-like and bridge-mediated merging mechanisms are revealed. In the domain shape-fixed diffusion, the moving domains obey the principle of the non-continuous random walks. Both diffusive and ballistic-like dynamics are disclosed. Additionally, the asymmetrical domains may show anisotropic movements. In the amoeba-like style, the pseudopodia are formed and changed stochastically while in the worm-like style two permanent parts (head and body) of the domains are formed prior movement and kept fixed in the motions. Finally, the integration of two domains is called a bridge-mediated one, if a small domain is bound to a bigger one directly through a dynamic bridge. The molecular dynamics simulations support the experimental findings of P3HT domain movements and rotations on the graphite surface.
[Display omitted]
•The shape-fixed, amoeba- and worm-like, and bridge-mediated surface motion of P3HT.•The shape-fixed style: a non-continuous random walk; diffusive and ballistic-like stage.•Revealing the anisotropic motion of asymmetrical domains in the shape-fixed style.•In the amoeba-like style, pseudopodia are formed and changed stochastically.•In the worm-like style, head and body part are kept fixed once formed during movements.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2020.122266</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2020-03, Vol.191, p.122266, Article 122266 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_2431251268 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Amoeba Domains Graphite Microscopy Molecular dynamics Movement Poly(3-hexylthiophene) Pseudopodia Random walk Scanning tunneling microscopy Surface diffusion Tunneling |
title | The merging mechanisms of poly(3-hexylthiophene) domains revealed through scanning tunneling microscopy and molecular dynamics simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A03%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20merging%20mechanisms%20of%20poly(3-hexylthiophene)%20domains%20revealed%20through%20scanning%20tunneling%20microscopy%20and%20molecular%20dynamics%20simulations&rft.jtitle=Polymer%20(Guilford)&rft.au=Li,%20Jin-Kuo&rft.date=2020-03-16&rft.volume=191&rft.spage=122266&rft.pages=122266-&rft.artnum=122266&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2020.122266&rft_dat=%3Cproquest_cross%3E2431251268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431251268&rft_id=info:pmid/&rft_els_id=S0032386120301051&rfr_iscdi=true |