A localizing gradient damage enhancement with micromorphic stress‐based anisotropic nonlocal interactions

Summary This article presents a localizing gradient damage model with evolving micromorphic stress‐based anisotropic nonlocal interactions. The objective is to model mesh independent fracture behavior of quasi‐brittle materials, and to avoid the issues associated with the existing gradient‐enhanced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2020-09, Vol.121 (18), p.4003-4027
Hauptverfasser: Negi, Alok, Kumar, Sachin, Poh, Leong Hien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4027
container_issue 18
container_start_page 4003
container_title International journal for numerical methods in engineering
container_volume 121
creator Negi, Alok
Kumar, Sachin
Poh, Leong Hien
description Summary This article presents a localizing gradient damage model with evolving micromorphic stress‐based anisotropic nonlocal interactions. The objective is to model mesh independent fracture behavior of quasi‐brittle materials, and to avoid the issues associated with the existing gradient‐enhanced damage models. In the proposed model, an evolving anisotropic nonlocal interaction domain governs the spatial diffusive behavior, which helps to maintain a localized damage bandwidth during the final stages of loading. The anisotropy in nonlocal interactions is captured through an anisotropic gradient tensor, which defines the orientation of the diffusive interaction domain based on the principal stresses at a given material point. In this article, a smooth micromorphic stress tensor is utilized for the determination of principal stress states, to enforce a properly oriented interaction across the bandwidth of the damage process zone throughout the loading process. The proposed approach also enables the usage of low order finite elements without any oscillatory micromorphic or nonlocal equivalent strain response in the later stages of deformation. The accuracy and performance of the proposed model are demonstrated numerically in plane strain/stress for mode‐I, mode‐II, and mixed‐mode loading conditions.
doi_str_mv 10.1002/nme.6397
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2431157884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431157884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-f2db6b6f19564b382eae17f4a2765fe530e3fe84e1d924d1abc9a71a7b39fb6c3</originalsourceid><addsrcrecordid>eNp1kE1OwzAUhC0EEqUgcQRLbNik-CeJ42VVlR-pwAbWlpO8tC6JHexUVVlxBM7ISXApW1ZPmvk0TzMIXVIyoYSwG9vBJOdSHKERJVIkhBFxjEbRkkkmC3qKzkJYE0JpRvgIvU1x6yrdmg9jl3jpdW3ADrjWnV4CBrvStoJuL23NsMKdqbzrnO9XpsJh8BDC9-dXqQPUWFsT3OBdHy3r7G8sNnYAr6vBOBvO0Umj2wAXf3eMXm_nL7P7ZPF89zCbLpKKSS6ShtVlXuYNlVmelrxgoIGKJtVM5FkDGSfAGyhSoLVkaU11WUktqBYll02ZV3yMrg65vXfvGwiDWruNt_GlYimPxUVRpJG6PlCxUQgeGtV702m_U5So_ZQqTqn2U0Y0OaBb08LuX049Pc5_-R-slXjV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431157884</pqid></control><display><type>article</type><title>A localizing gradient damage enhancement with micromorphic stress‐based anisotropic nonlocal interactions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Negi, Alok ; Kumar, Sachin ; Poh, Leong Hien</creator><creatorcontrib>Negi, Alok ; Kumar, Sachin ; Poh, Leong Hien</creatorcontrib><description>Summary This article presents a localizing gradient damage model with evolving micromorphic stress‐based anisotropic nonlocal interactions. The objective is to model mesh independent fracture behavior of quasi‐brittle materials, and to avoid the issues associated with the existing gradient‐enhanced damage models. In the proposed model, an evolving anisotropic nonlocal interaction domain governs the spatial diffusive behavior, which helps to maintain a localized damage bandwidth during the final stages of loading. The anisotropy in nonlocal interactions is captured through an anisotropic gradient tensor, which defines the orientation of the diffusive interaction domain based on the principal stresses at a given material point. In this article, a smooth micromorphic stress tensor is utilized for the determination of principal stress states, to enforce a properly oriented interaction across the bandwidth of the damage process zone throughout the loading process. The proposed approach also enables the usage of low order finite elements without any oscillatory micromorphic or nonlocal equivalent strain response in the later stages of deformation. The accuracy and performance of the proposed model are demonstrated numerically in plane strain/stress for mode‐I, mode‐II, and mixed‐mode loading conditions.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6397</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Anisotropy ; Brittle materials ; Damage assessment ; Damage localization ; Domains ; Evolution ; Finite element method ; gradient damage ; Mathematical analysis ; micromorphic continua ; micromorphic stress ; Model accuracy ; Plane strain ; quasi‐brittle materials ; strain localization ; Tensors</subject><ispartof>International journal for numerical methods in engineering, 2020-09, Vol.121 (18), p.4003-4027</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-f2db6b6f19564b382eae17f4a2765fe530e3fe84e1d924d1abc9a71a7b39fb6c3</citedby><cites>FETCH-LOGICAL-c2937-f2db6b6f19564b382eae17f4a2765fe530e3fe84e1d924d1abc9a71a7b39fb6c3</cites><orcidid>0000-0002-4696-5778 ; 0000-0002-7670-937X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.6397$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.6397$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Negi, Alok</creatorcontrib><creatorcontrib>Kumar, Sachin</creatorcontrib><creatorcontrib>Poh, Leong Hien</creatorcontrib><title>A localizing gradient damage enhancement with micromorphic stress‐based anisotropic nonlocal interactions</title><title>International journal for numerical methods in engineering</title><description>Summary This article presents a localizing gradient damage model with evolving micromorphic stress‐based anisotropic nonlocal interactions. The objective is to model mesh independent fracture behavior of quasi‐brittle materials, and to avoid the issues associated with the existing gradient‐enhanced damage models. In the proposed model, an evolving anisotropic nonlocal interaction domain governs the spatial diffusive behavior, which helps to maintain a localized damage bandwidth during the final stages of loading. The anisotropy in nonlocal interactions is captured through an anisotropic gradient tensor, which defines the orientation of the diffusive interaction domain based on the principal stresses at a given material point. In this article, a smooth micromorphic stress tensor is utilized for the determination of principal stress states, to enforce a properly oriented interaction across the bandwidth of the damage process zone throughout the loading process. The proposed approach also enables the usage of low order finite elements without any oscillatory micromorphic or nonlocal equivalent strain response in the later stages of deformation. The accuracy and performance of the proposed model are demonstrated numerically in plane strain/stress for mode‐I, mode‐II, and mixed‐mode loading conditions.</description><subject>Anisotropy</subject><subject>Brittle materials</subject><subject>Damage assessment</subject><subject>Damage localization</subject><subject>Domains</subject><subject>Evolution</subject><subject>Finite element method</subject><subject>gradient damage</subject><subject>Mathematical analysis</subject><subject>micromorphic continua</subject><subject>micromorphic stress</subject><subject>Model accuracy</subject><subject>Plane strain</subject><subject>quasi‐brittle materials</subject><subject>strain localization</subject><subject>Tensors</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAUhC0EEqUgcQRLbNik-CeJ42VVlR-pwAbWlpO8tC6JHexUVVlxBM7ISXApW1ZPmvk0TzMIXVIyoYSwG9vBJOdSHKERJVIkhBFxjEbRkkkmC3qKzkJYE0JpRvgIvU1x6yrdmg9jl3jpdW3ADrjWnV4CBrvStoJuL23NsMKdqbzrnO9XpsJh8BDC9-dXqQPUWFsT3OBdHy3r7G8sNnYAr6vBOBvO0Umj2wAXf3eMXm_nL7P7ZPF89zCbLpKKSS6ShtVlXuYNlVmelrxgoIGKJtVM5FkDGSfAGyhSoLVkaU11WUktqBYll02ZV3yMrg65vXfvGwiDWruNt_GlYimPxUVRpJG6PlCxUQgeGtV702m_U5So_ZQqTqn2U0Y0OaBb08LuX049Pc5_-R-slXjV</recordid><startdate>20200930</startdate><enddate>20200930</enddate><creator>Negi, Alok</creator><creator>Kumar, Sachin</creator><creator>Poh, Leong Hien</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4696-5778</orcidid><orcidid>https://orcid.org/0000-0002-7670-937X</orcidid></search><sort><creationdate>20200930</creationdate><title>A localizing gradient damage enhancement with micromorphic stress‐based anisotropic nonlocal interactions</title><author>Negi, Alok ; Kumar, Sachin ; Poh, Leong Hien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-f2db6b6f19564b382eae17f4a2765fe530e3fe84e1d924d1abc9a71a7b39fb6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Brittle materials</topic><topic>Damage assessment</topic><topic>Damage localization</topic><topic>Domains</topic><topic>Evolution</topic><topic>Finite element method</topic><topic>gradient damage</topic><topic>Mathematical analysis</topic><topic>micromorphic continua</topic><topic>micromorphic stress</topic><topic>Model accuracy</topic><topic>Plane strain</topic><topic>quasi‐brittle materials</topic><topic>strain localization</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Negi, Alok</creatorcontrib><creatorcontrib>Kumar, Sachin</creatorcontrib><creatorcontrib>Poh, Leong Hien</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Negi, Alok</au><au>Kumar, Sachin</au><au>Poh, Leong Hien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A localizing gradient damage enhancement with micromorphic stress‐based anisotropic nonlocal interactions</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2020-09-30</date><risdate>2020</risdate><volume>121</volume><issue>18</issue><spage>4003</spage><epage>4027</epage><pages>4003-4027</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary This article presents a localizing gradient damage model with evolving micromorphic stress‐based anisotropic nonlocal interactions. The objective is to model mesh independent fracture behavior of quasi‐brittle materials, and to avoid the issues associated with the existing gradient‐enhanced damage models. In the proposed model, an evolving anisotropic nonlocal interaction domain governs the spatial diffusive behavior, which helps to maintain a localized damage bandwidth during the final stages of loading. The anisotropy in nonlocal interactions is captured through an anisotropic gradient tensor, which defines the orientation of the diffusive interaction domain based on the principal stresses at a given material point. In this article, a smooth micromorphic stress tensor is utilized for the determination of principal stress states, to enforce a properly oriented interaction across the bandwidth of the damage process zone throughout the loading process. The proposed approach also enables the usage of low order finite elements without any oscillatory micromorphic or nonlocal equivalent strain response in the later stages of deformation. The accuracy and performance of the proposed model are demonstrated numerically in plane strain/stress for mode‐I, mode‐II, and mixed‐mode loading conditions.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.6397</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-4696-5778</orcidid><orcidid>https://orcid.org/0000-0002-7670-937X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2020-09, Vol.121 (18), p.4003-4027
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2431157884
source Wiley Online Library Journals Frontfile Complete
subjects Anisotropy
Brittle materials
Damage assessment
Damage localization
Domains
Evolution
Finite element method
gradient damage
Mathematical analysis
micromorphic continua
micromorphic stress
Model accuracy
Plane strain
quasi‐brittle materials
strain localization
Tensors
title A localizing gradient damage enhancement with micromorphic stress‐based anisotropic nonlocal interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20localizing%20gradient%20damage%20enhancement%20with%20micromorphic%20stress%E2%80%90based%20anisotropic%20nonlocal%20interactions&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Negi,%20Alok&rft.date=2020-09-30&rft.volume=121&rft.issue=18&rft.spage=4003&rft.epage=4027&rft.pages=4003-4027&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6397&rft_dat=%3Cproquest_cross%3E2431157884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431157884&rft_id=info:pmid/&rfr_iscdi=true