User idea implementation in open innovation communities: Evidence from a new product development crowdsourcing community

In collaborative crowdsourcing communities for open innovation, users generate and submit ideas as idea co‐creators. Firms then select and implement valuable ideas for new product development. Despite the popularity and success of these open innovation communities, relatively little is known about t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information systems journal (Oxford, England) England), 2020-09, Vol.30 (5), p.899-927
Hauptverfasser: Liu, Qian, Du, Qianzhou, Hong, Yili, Fan, Weiguo, Wu, Shuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 927
container_issue 5
container_start_page 899
container_title Information systems journal (Oxford, England)
container_volume 30
creator Liu, Qian
Du, Qianzhou
Hong, Yili
Fan, Weiguo
Wu, Shuang
description In collaborative crowdsourcing communities for open innovation, users generate and submit ideas as idea co‐creators. Firms then select and implement valuable ideas for new product development. Despite the popularity and success of these open innovation communities, relatively little is known about the factors that determine the implementation of the user‐generated ideas. Based on research on individual creativity, we propose a conceptual model integrating users' previous experience, idea presentation characteristics and feedback valence to explain the likelihood of idea implementation. We validate our research model with a panel data analysis of 43 550 ideas submitted by 16 360 users in the MIUI new product development community hosted by Xiaomi, a large electronics manufacturing company in China. We find an inverted U‐shaped relationship between users' past successful experience and idea implementation. Furthermore, the length of ideas is positively associated with the likelihood of idea implementation. There is also an inverted U‐shaped relationship between supporting evidence and idea implementation. Finally, we demonstrate the negative effect of positive feedback and the positive effect of negative feedback on idea implementation. These findings offer rich insights to understand the phenomenon of open innovation better. Theoretical and practical implications are discussed.
doi_str_mv 10.1111/isj.12286
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2431149606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431149606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3456-5fa1df33c859c656bdbf03005ad34a7f765e43c57ae0fbaed93affcc4ec2eaf73</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRSMEEqWw4A8ssWKR1o4fadihqrxUiQV0HbnOGLlK7GAnLf17HILYMZsZjc7cubpJck3wjMSam7CbkSxbiJNkQqjgacZzfjrMHKekIPl5chHCDmMiGGOT5GsTwCNTgUSmaWtowHayM84iY5FrYejW7ceVck3TW9MZCHdotY9XVgHS3jVIIgsH1HpX9apDFeyhdu0ghpR3hyq43itjP_4kjpfJmZZ1gKvfPk02D6v35VO6fn18Xt6vU0UZFynXklSaUrXghRJcbKutxhRjLivKZK5zwYFRxXMJWG8lVAWVWivFQGUgdU6nyc2oG7199hC6che92PiyzBglhBUCi0jdjlR0G4IHXbbeNNIfS4LLIdgyBlv-BBvZ-cgeTA3H_8Hy-e1lvPgGF45-XQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431149606</pqid></control><display><type>article</type><title>User idea implementation in open innovation communities: Evidence from a new product development crowdsourcing community</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Liu, Qian ; Du, Qianzhou ; Hong, Yili ; Fan, Weiguo ; Wu, Shuang</creator><creatorcontrib>Liu, Qian ; Du, Qianzhou ; Hong, Yili ; Fan, Weiguo ; Wu, Shuang</creatorcontrib><description>In collaborative crowdsourcing communities for open innovation, users generate and submit ideas as idea co‐creators. Firms then select and implement valuable ideas for new product development. Despite the popularity and success of these open innovation communities, relatively little is known about the factors that determine the implementation of the user‐generated ideas. Based on research on individual creativity, we propose a conceptual model integrating users' previous experience, idea presentation characteristics and feedback valence to explain the likelihood of idea implementation. We validate our research model with a panel data analysis of 43 550 ideas submitted by 16 360 users in the MIUI new product development community hosted by Xiaomi, a large electronics manufacturing company in China. We find an inverted U‐shaped relationship between users' past successful experience and idea implementation. Furthermore, the length of ideas is positively associated with the likelihood of idea implementation. There is also an inverted U‐shaped relationship between supporting evidence and idea implementation. Finally, we demonstrate the negative effect of positive feedback and the positive effect of negative feedback on idea implementation. These findings offer rich insights to understand the phenomenon of open innovation better. Theoretical and practical implications are discussed.</description><identifier>ISSN: 1350-1917</identifier><identifier>EISSN: 1365-2575</identifier><identifier>DOI: 10.1111/isj.12286</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Crowdsourcing ; Data analysis ; feedback valence ; idea implementation likelihood ; Innovations ; Negative feedback ; open innovation ; past failure ; past success ; Positive feedback ; Product development</subject><ispartof>Information systems journal (Oxford, England), 2020-09, Vol.30 (5), p.899-927</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3456-5fa1df33c859c656bdbf03005ad34a7f765e43c57ae0fbaed93affcc4ec2eaf73</citedby><cites>FETCH-LOGICAL-c3456-5fa1df33c859c656bdbf03005ad34a7f765e43c57ae0fbaed93affcc4ec2eaf73</cites><orcidid>0000-0002-8080-2200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fisj.12286$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fisj.12286$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Du, Qianzhou</creatorcontrib><creatorcontrib>Hong, Yili</creatorcontrib><creatorcontrib>Fan, Weiguo</creatorcontrib><creatorcontrib>Wu, Shuang</creatorcontrib><title>User idea implementation in open innovation communities: Evidence from a new product development crowdsourcing community</title><title>Information systems journal (Oxford, England)</title><description>In collaborative crowdsourcing communities for open innovation, users generate and submit ideas as idea co‐creators. Firms then select and implement valuable ideas for new product development. Despite the popularity and success of these open innovation communities, relatively little is known about the factors that determine the implementation of the user‐generated ideas. Based on research on individual creativity, we propose a conceptual model integrating users' previous experience, idea presentation characteristics and feedback valence to explain the likelihood of idea implementation. We validate our research model with a panel data analysis of 43 550 ideas submitted by 16 360 users in the MIUI new product development community hosted by Xiaomi, a large electronics manufacturing company in China. We find an inverted U‐shaped relationship between users' past successful experience and idea implementation. Furthermore, the length of ideas is positively associated with the likelihood of idea implementation. There is also an inverted U‐shaped relationship between supporting evidence and idea implementation. Finally, we demonstrate the negative effect of positive feedback and the positive effect of negative feedback on idea implementation. These findings offer rich insights to understand the phenomenon of open innovation better. Theoretical and practical implications are discussed.</description><subject>Crowdsourcing</subject><subject>Data analysis</subject><subject>feedback valence</subject><subject>idea implementation likelihood</subject><subject>Innovations</subject><subject>Negative feedback</subject><subject>open innovation</subject><subject>past failure</subject><subject>past success</subject><subject>Positive feedback</subject><subject>Product development</subject><issn>1350-1917</issn><issn>1365-2575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRSMEEqWw4A8ssWKR1o4fadihqrxUiQV0HbnOGLlK7GAnLf17HILYMZsZjc7cubpJck3wjMSam7CbkSxbiJNkQqjgacZzfjrMHKekIPl5chHCDmMiGGOT5GsTwCNTgUSmaWtowHayM84iY5FrYejW7ceVck3TW9MZCHdotY9XVgHS3jVIIgsH1HpX9apDFeyhdu0ghpR3hyq43itjP_4kjpfJmZZ1gKvfPk02D6v35VO6fn18Xt6vU0UZFynXklSaUrXghRJcbKutxhRjLivKZK5zwYFRxXMJWG8lVAWVWivFQGUgdU6nyc2oG7199hC6che92PiyzBglhBUCi0jdjlR0G4IHXbbeNNIfS4LLIdgyBlv-BBvZ-cgeTA3H_8Hy-e1lvPgGF45-XQ</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Liu, Qian</creator><creator>Du, Qianzhou</creator><creator>Hong, Yili</creator><creator>Fan, Weiguo</creator><creator>Wu, Shuang</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-8080-2200</orcidid></search><sort><creationdate>202009</creationdate><title>User idea implementation in open innovation communities: Evidence from a new product development crowdsourcing community</title><author>Liu, Qian ; Du, Qianzhou ; Hong, Yili ; Fan, Weiguo ; Wu, Shuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3456-5fa1df33c859c656bdbf03005ad34a7f765e43c57ae0fbaed93affcc4ec2eaf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Crowdsourcing</topic><topic>Data analysis</topic><topic>feedback valence</topic><topic>idea implementation likelihood</topic><topic>Innovations</topic><topic>Negative feedback</topic><topic>open innovation</topic><topic>past failure</topic><topic>past success</topic><topic>Positive feedback</topic><topic>Product development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Du, Qianzhou</creatorcontrib><creatorcontrib>Hong, Yili</creatorcontrib><creatorcontrib>Fan, Weiguo</creatorcontrib><creatorcontrib>Wu, Shuang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Information systems journal (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qian</au><au>Du, Qianzhou</au><au>Hong, Yili</au><au>Fan, Weiguo</au><au>Wu, Shuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>User idea implementation in open innovation communities: Evidence from a new product development crowdsourcing community</atitle><jtitle>Information systems journal (Oxford, England)</jtitle><date>2020-09</date><risdate>2020</risdate><volume>30</volume><issue>5</issue><spage>899</spage><epage>927</epage><pages>899-927</pages><issn>1350-1917</issn><eissn>1365-2575</eissn><abstract>In collaborative crowdsourcing communities for open innovation, users generate and submit ideas as idea co‐creators. Firms then select and implement valuable ideas for new product development. Despite the popularity and success of these open innovation communities, relatively little is known about the factors that determine the implementation of the user‐generated ideas. Based on research on individual creativity, we propose a conceptual model integrating users' previous experience, idea presentation characteristics and feedback valence to explain the likelihood of idea implementation. We validate our research model with a panel data analysis of 43 550 ideas submitted by 16 360 users in the MIUI new product development community hosted by Xiaomi, a large electronics manufacturing company in China. We find an inverted U‐shaped relationship between users' past successful experience and idea implementation. Furthermore, the length of ideas is positively associated with the likelihood of idea implementation. There is also an inverted U‐shaped relationship between supporting evidence and idea implementation. Finally, we demonstrate the negative effect of positive feedback and the positive effect of negative feedback on idea implementation. These findings offer rich insights to understand the phenomenon of open innovation better. Theoretical and practical implications are discussed.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/isj.12286</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-8080-2200</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1350-1917
ispartof Information systems journal (Oxford, England), 2020-09, Vol.30 (5), p.899-927
issn 1350-1917
1365-2575
language eng
recordid cdi_proquest_journals_2431149606
source EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects Crowdsourcing
Data analysis
feedback valence
idea implementation likelihood
Innovations
Negative feedback
open innovation
past failure
past success
Positive feedback
Product development
title User idea implementation in open innovation communities: Evidence from a new product development crowdsourcing community
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=User%20idea%20implementation%20in%20open%20innovation%20communities:%20Evidence%20from%20a%20new%20product%20development%20crowdsourcing%20community&rft.jtitle=Information%20systems%20journal%20(Oxford,%20England)&rft.au=Liu,%20Qian&rft.date=2020-09&rft.volume=30&rft.issue=5&rft.spage=899&rft.epage=927&rft.pages=899-927&rft.issn=1350-1917&rft.eissn=1365-2575&rft_id=info:doi/10.1111/isj.12286&rft_dat=%3Cproquest_cross%3E2431149606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431149606&rft_id=info:pmid/&rfr_iscdi=true