Curvature-Dependant Global Convergence Rates for Optimization on Manifolds of Bounded Geometry

We give curvature-dependant convergence rates for the optimization of weakly convex functions defined on a manifold of 1-bounded geometry via Riemannian gradient descent and via the dynamic trivialization algorithm. In order to do this, we give a tighter bound on the norm of the Hessian of the Riema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-08
1. Verfasser: Lezcano-Casado, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lezcano-Casado, Mario
description We give curvature-dependant convergence rates for the optimization of weakly convex functions defined on a manifold of 1-bounded geometry via Riemannian gradient descent and via the dynamic trivialization algorithm. In order to do this, we give a tighter bound on the norm of the Hessian of the Riemannian exponential than the previously known. We compute these bounds explicitly for some manifolds commonly used in the optimization literature such as the special orthogonal group and the real Grassmannian. Along the way, we present self-contained proofs of fully general bounds on the norm of the differential of the exponential map and certain cosine inequalities on manifolds, which are commonly used in optimization on manifolds.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2431126246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431126246</sourcerecordid><originalsourceid>FETCH-proquest_journals_24311262463</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_uNBa0Bm11lnZJoJonUzNNRSda_MQ6utr0QcEB87inAkLuBBJtE45n7HQ2jaOY56veJaJgF0Lb0bpvMFoiwNqJbWDsqOb7KAgPaJ5oL4jnKVDCzUZOA2u6Zu3dA1p-HKUuqmpUxaohg15rVBBidSjM68Fm9aysxj-PGfL_e5SHKLB0NOjdVVL3uhvqngqkoTnPM3Ff9cHenZESw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431126246</pqid></control><display><type>article</type><title>Curvature-Dependant Global Convergence Rates for Optimization on Manifolds of Bounded Geometry</title><source>Free E- Journals</source><creator>Lezcano-Casado, Mario</creator><creatorcontrib>Lezcano-Casado, Mario</creatorcontrib><description>We give curvature-dependant convergence rates for the optimization of weakly convex functions defined on a manifold of 1-bounded geometry via Riemannian gradient descent and via the dynamic trivialization algorithm. In order to do this, we give a tighter bound on the norm of the Hessian of the Riemannian exponential than the previously known. We compute these bounds explicitly for some manifolds commonly used in the optimization literature such as the special orthogonal group and the real Grassmannian. Along the way, we present self-contained proofs of fully general bounds on the norm of the differential of the exponential map and certain cosine inequalities on manifolds, which are commonly used in optimization on manifolds.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Convergence ; Curvature ; Optimization</subject><ispartof>arXiv.org, 2020-08</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Lezcano-Casado, Mario</creatorcontrib><title>Curvature-Dependant Global Convergence Rates for Optimization on Manifolds of Bounded Geometry</title><title>arXiv.org</title><description>We give curvature-dependant convergence rates for the optimization of weakly convex functions defined on a manifold of 1-bounded geometry via Riemannian gradient descent and via the dynamic trivialization algorithm. In order to do this, we give a tighter bound on the norm of the Hessian of the Riemannian exponential than the previously known. We compute these bounds explicitly for some manifolds commonly used in the optimization literature such as the special orthogonal group and the real Grassmannian. Along the way, we present self-contained proofs of fully general bounds on the norm of the differential of the exponential map and certain cosine inequalities on manifolds, which are commonly used in optimization on manifolds.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Curvature</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKgkAUQIcgSMp_uNBa0Bm11lnZJoJonUzNNRSda_MQ6utr0QcEB87inAkLuBBJtE45n7HQ2jaOY56veJaJgF0Lb0bpvMFoiwNqJbWDsqOb7KAgPaJ5oL4jnKVDCzUZOA2u6Zu3dA1p-HKUuqmpUxaohg15rVBBidSjM68Fm9aysxj-PGfL_e5SHKLB0NOjdVVL3uhvqngqkoTnPM3Ff9cHenZESw</recordid><startdate>20200806</startdate><enddate>20200806</enddate><creator>Lezcano-Casado, Mario</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200806</creationdate><title>Curvature-Dependant Global Convergence Rates for Optimization on Manifolds of Bounded Geometry</title><author>Lezcano-Casado, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24311262463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Curvature</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Lezcano-Casado, Mario</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lezcano-Casado, Mario</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Curvature-Dependant Global Convergence Rates for Optimization on Manifolds of Bounded Geometry</atitle><jtitle>arXiv.org</jtitle><date>2020-08-06</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We give curvature-dependant convergence rates for the optimization of weakly convex functions defined on a manifold of 1-bounded geometry via Riemannian gradient descent and via the dynamic trivialization algorithm. In order to do this, we give a tighter bound on the norm of the Hessian of the Riemannian exponential than the previously known. We compute these bounds explicitly for some manifolds commonly used in the optimization literature such as the special orthogonal group and the real Grassmannian. Along the way, we present self-contained proofs of fully general bounds on the norm of the differential of the exponential map and certain cosine inequalities on manifolds, which are commonly used in optimization on manifolds.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2431126246
source Free E- Journals
subjects Algorithms
Convergence
Curvature
Optimization
title Curvature-Dependant Global Convergence Rates for Optimization on Manifolds of Bounded Geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Curvature-Dependant%20Global%20Convergence%20Rates%20for%20Optimization%20on%20Manifolds%20of%20Bounded%20Geometry&rft.jtitle=arXiv.org&rft.au=Lezcano-Casado,%20Mario&rft.date=2020-08-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2431126246%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431126246&rft_id=info:pmid/&rfr_iscdi=true