Microstructure and Performance of Mn-Ga/Fe-Cr-Co Magnetic Composites Fabricated by Mechanical Alloying
Mn-Ga and Fe-Cr-Co have potential use as components in exchange-coupled composite magnets. Herein, we prepared Mn-Ga composites through mechanical alloying, which was followed by sintering. During high-energy ball milling, Fe-Cr-Co powder was added into the Mn-Ga powder to form a composite. The main...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2020-08, Vol.72 (8), p.2826-2833 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2833 |
---|---|
container_issue | 8 |
container_start_page | 2826 |
container_title | JOM (1989) |
container_volume | 72 |
creator | Zhang, Lin Xu, Naikang Chen, Menglong Wang, Engang |
description | Mn-Ga and Fe-Cr-Co have potential use as components in exchange-coupled composite magnets. Herein, we prepared Mn-Ga composites through mechanical alloying, which was followed by sintering. During high-energy ball milling, Fe-Cr-Co powder was added into the Mn-Ga powder to form a composite. The main phases in the composites existed as pure Mn and pure Ga in the as-milled state; subsequently, these phases changed into intermetallic compounds, such as Mn
3
Ga and Mn
0.85
Ga
0.15
, after sintering at 385°C for 6 h. When the Fe-Cr-Co fraction increased from 0% to 20%, the coercivity (
H
c
) of the Mn-Ga/Fe-Cr-Co composites decreased monotonically from 8.04 kOe to 2.28 kOe; furthermore, their remanence (
M
r
) increased from 8.52 emu/g to 13.33 emu/g, and the maximum energy product (BH)
max
increased from 0.15 MGOe to 0.26 MGOe. The results obtained in this study facilitate the improvement of the magnetic properties of Mn-Ga composites for utilization in permanent magnet applications. |
doi_str_mv | 10.1007/s11837-020-04167-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2431033833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431033833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4b4e988bff758de193485f103e6dcffd443b5daaf2c039451795d8049264d6ae3</originalsourceid><addsrcrecordid>eNp9kEFPwyAYhonRxDn9A55IPOOg0JYel8ZNkzV60DOh8DG7dGVCe9i_lzkTb574SN7n_fI9CN0z-sgoLReRMclLQjNKqGBFSeQFmrFccMJkzi7TTEVJhOTyGt3EuKMJEhWbIdd0Jvg4hsmMUwCsB4vfIDgf9nowgL3DzUDWerECUgdSe9zo7QBjZ3Dt9wcfuxEiXuk2dEaPYHF7xA2YTz2kf4-Xfe-P3bC9RVdO9xHuft85-lg9vdfPZPO6fqmXG2Kyko5EtAIqKVvnylxaYBUXMneMciiscc4Kwdvcau0yQ3klclZWuZVUVFkhbKGBz9HDufcQ_NcEcVQ7P4UhrVSZ4KmIS85TKjunTqfHAE4dQrfX4agYVSef6uxTJZ_qx6eSCeJnKKbwsIXwV_0P9Q3iengd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431033833</pqid></control><display><type>article</type><title>Microstructure and Performance of Mn-Ga/Fe-Cr-Co Magnetic Composites Fabricated by Mechanical Alloying</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Lin ; Xu, Naikang ; Chen, Menglong ; Wang, Engang</creator><creatorcontrib>Zhang, Lin ; Xu, Naikang ; Chen, Menglong ; Wang, Engang</creatorcontrib><description>Mn-Ga and Fe-Cr-Co have potential use as components in exchange-coupled composite magnets. Herein, we prepared Mn-Ga composites through mechanical alloying, which was followed by sintering. During high-energy ball milling, Fe-Cr-Co powder was added into the Mn-Ga powder to form a composite. The main phases in the composites existed as pure Mn and pure Ga in the as-milled state; subsequently, these phases changed into intermetallic compounds, such as Mn
3
Ga and Mn
0.85
Ga
0.15
, after sintering at 385°C for 6 h. When the Fe-Cr-Co fraction increased from 0% to 20%, the coercivity (
H
c
) of the Mn-Ga/Fe-Cr-Co composites decreased monotonically from 8.04 kOe to 2.28 kOe; furthermore, their remanence (
M
r
) increased from 8.52 emu/g to 13.33 emu/g, and the maximum energy product (BH)
max
increased from 0.15 MGOe to 0.26 MGOe. The results obtained in this study facilitate the improvement of the magnetic properties of Mn-Ga composites for utilization in permanent magnet applications.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-020-04167-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced Processing and Additive Manufacturing of Functional Magnetic Materials ; Alloys ; Annealing ; Ball milling ; Chemistry/Food Science ; Chromium ; Cobalt ; Coercivity ; Composite materials ; Earth Sciences ; Energy ; Engineering ; Environment ; Intermetallic compounds ; Iron ; Magnetic properties ; Manganese ; Mechanical alloying ; Molecular beam epitaxy ; Permanent magnets ; Physics ; Process controls ; Rare earth elements ; Remanence ; Sintering ; Sintering (powder metallurgy) ; Trace elements</subject><ispartof>JOM (1989), 2020-08, Vol.72 (8), p.2826-2833</ispartof><rights>The Minerals, Metals & Materials Society 2020</rights><rights>Copyright Springer Nature B.V. Aug 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4b4e988bff758de193485f103e6dcffd443b5daaf2c039451795d8049264d6ae3</cites><orcidid>0000-0003-3258-3418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-020-04167-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-020-04167-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Xu, Naikang</creatorcontrib><creatorcontrib>Chen, Menglong</creatorcontrib><creatorcontrib>Wang, Engang</creatorcontrib><title>Microstructure and Performance of Mn-Ga/Fe-Cr-Co Magnetic Composites Fabricated by Mechanical Alloying</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Mn-Ga and Fe-Cr-Co have potential use as components in exchange-coupled composite magnets. Herein, we prepared Mn-Ga composites through mechanical alloying, which was followed by sintering. During high-energy ball milling, Fe-Cr-Co powder was added into the Mn-Ga powder to form a composite. The main phases in the composites existed as pure Mn and pure Ga in the as-milled state; subsequently, these phases changed into intermetallic compounds, such as Mn
3
Ga and Mn
0.85
Ga
0.15
, after sintering at 385°C for 6 h. When the Fe-Cr-Co fraction increased from 0% to 20%, the coercivity (
H
c
) of the Mn-Ga/Fe-Cr-Co composites decreased monotonically from 8.04 kOe to 2.28 kOe; furthermore, their remanence (
M
r
) increased from 8.52 emu/g to 13.33 emu/g, and the maximum energy product (BH)
max
increased from 0.15 MGOe to 0.26 MGOe. The results obtained in this study facilitate the improvement of the magnetic properties of Mn-Ga composites for utilization in permanent magnet applications.</description><subject>Advanced Processing and Additive Manufacturing of Functional Magnetic Materials</subject><subject>Alloys</subject><subject>Annealing</subject><subject>Ball milling</subject><subject>Chemistry/Food Science</subject><subject>Chromium</subject><subject>Cobalt</subject><subject>Coercivity</subject><subject>Composite materials</subject><subject>Earth Sciences</subject><subject>Energy</subject><subject>Engineering</subject><subject>Environment</subject><subject>Intermetallic compounds</subject><subject>Iron</subject><subject>Magnetic properties</subject><subject>Manganese</subject><subject>Mechanical alloying</subject><subject>Molecular beam epitaxy</subject><subject>Permanent magnets</subject><subject>Physics</subject><subject>Process controls</subject><subject>Rare earth elements</subject><subject>Remanence</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Trace elements</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEFPwyAYhonRxDn9A55IPOOg0JYel8ZNkzV60DOh8DG7dGVCe9i_lzkTb574SN7n_fI9CN0z-sgoLReRMclLQjNKqGBFSeQFmrFccMJkzi7TTEVJhOTyGt3EuKMJEhWbIdd0Jvg4hsmMUwCsB4vfIDgf9nowgL3DzUDWerECUgdSe9zo7QBjZ3Dt9wcfuxEiXuk2dEaPYHF7xA2YTz2kf4-Xfe-P3bC9RVdO9xHuft85-lg9vdfPZPO6fqmXG2Kyko5EtAIqKVvnylxaYBUXMneMciiscc4Kwdvcau0yQ3klclZWuZVUVFkhbKGBz9HDufcQ_NcEcVQ7P4UhrVSZ4KmIS85TKjunTqfHAE4dQrfX4agYVSef6uxTJZ_qx6eSCeJnKKbwsIXwV_0P9Q3iengd</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Zhang, Lin</creator><creator>Xu, Naikang</creator><creator>Chen, Menglong</creator><creator>Wang, Engang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-3258-3418</orcidid></search><sort><creationdate>20200801</creationdate><title>Microstructure and Performance of Mn-Ga/Fe-Cr-Co Magnetic Composites Fabricated by Mechanical Alloying</title><author>Zhang, Lin ; Xu, Naikang ; Chen, Menglong ; Wang, Engang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4b4e988bff758de193485f103e6dcffd443b5daaf2c039451795d8049264d6ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advanced Processing and Additive Manufacturing of Functional Magnetic Materials</topic><topic>Alloys</topic><topic>Annealing</topic><topic>Ball milling</topic><topic>Chemistry/Food Science</topic><topic>Chromium</topic><topic>Cobalt</topic><topic>Coercivity</topic><topic>Composite materials</topic><topic>Earth Sciences</topic><topic>Energy</topic><topic>Engineering</topic><topic>Environment</topic><topic>Intermetallic compounds</topic><topic>Iron</topic><topic>Magnetic properties</topic><topic>Manganese</topic><topic>Mechanical alloying</topic><topic>Molecular beam epitaxy</topic><topic>Permanent magnets</topic><topic>Physics</topic><topic>Process controls</topic><topic>Rare earth elements</topic><topic>Remanence</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Trace elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Xu, Naikang</creatorcontrib><creatorcontrib>Chen, Menglong</creatorcontrib><creatorcontrib>Wang, Engang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lin</au><au>Xu, Naikang</au><au>Chen, Menglong</au><au>Wang, Engang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and Performance of Mn-Ga/Fe-Cr-Co Magnetic Composites Fabricated by Mechanical Alloying</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>72</volume><issue>8</issue><spage>2826</spage><epage>2833</epage><pages>2826-2833</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Mn-Ga and Fe-Cr-Co have potential use as components in exchange-coupled composite magnets. Herein, we prepared Mn-Ga composites through mechanical alloying, which was followed by sintering. During high-energy ball milling, Fe-Cr-Co powder was added into the Mn-Ga powder to form a composite. The main phases in the composites existed as pure Mn and pure Ga in the as-milled state; subsequently, these phases changed into intermetallic compounds, such as Mn
3
Ga and Mn
0.85
Ga
0.15
, after sintering at 385°C for 6 h. When the Fe-Cr-Co fraction increased from 0% to 20%, the coercivity (
H
c
) of the Mn-Ga/Fe-Cr-Co composites decreased monotonically from 8.04 kOe to 2.28 kOe; furthermore, their remanence (
M
r
) increased from 8.52 emu/g to 13.33 emu/g, and the maximum energy product (BH)
max
increased from 0.15 MGOe to 0.26 MGOe. The results obtained in this study facilitate the improvement of the magnetic properties of Mn-Ga composites for utilization in permanent magnet applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-020-04167-8</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3258-3418</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2020-08, Vol.72 (8), p.2826-2833 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_journals_2431033833 |
source | SpringerLink Journals - AutoHoldings |
subjects | Advanced Processing and Additive Manufacturing of Functional Magnetic Materials Alloys Annealing Ball milling Chemistry/Food Science Chromium Cobalt Coercivity Composite materials Earth Sciences Energy Engineering Environment Intermetallic compounds Iron Magnetic properties Manganese Mechanical alloying Molecular beam epitaxy Permanent magnets Physics Process controls Rare earth elements Remanence Sintering Sintering (powder metallurgy) Trace elements |
title | Microstructure and Performance of Mn-Ga/Fe-Cr-Co Magnetic Composites Fabricated by Mechanical Alloying |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20Performance%20of%20Mn-Ga/Fe-Cr-Co%20Magnetic%20Composites%20Fabricated%20by%20Mechanical%20Alloying&rft.jtitle=JOM%20(1989)&rft.au=Zhang,%20Lin&rft.date=2020-08-01&rft.volume=72&rft.issue=8&rft.spage=2826&rft.epage=2833&rft.pages=2826-2833&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-020-04167-8&rft_dat=%3Cproquest_cross%3E2431033833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431033833&rft_id=info:pmid/&rfr_iscdi=true |