Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method

Fracturing process and possible factors influencing crack initiation, propagation and coalescence of granitic rocks are investigated using a grain-based finite-discrete element method (GB-FDEM). In contrast to conventional methods, the GB-FDEM used herein consists of dual-scale contact models ensuri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2020-03, Vol.127, p.104219, Article 104219
Hauptverfasser: Li, X.F., Li, H.B., Liu, L.W., Liu, Y.Q., Ju, M.H., Zhao, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104219
container_title International journal of rock mechanics and mining sciences (Oxford, England : 1997)
container_volume 127
creator Li, X.F.
Li, H.B.
Liu, L.W.
Liu, Y.Q.
Ju, M.H.
Zhao, J.
description Fracturing process and possible factors influencing crack initiation, propagation and coalescence of granitic rocks are investigated using a grain-based finite-discrete element method (GB-FDEM). In contrast to conventional methods, the GB-FDEM used herein consists of dual-scale contact models ensuring grain breakage, and pre-processing scheme for reproducing the realistic micro heterogeneity of rocks. A standardised calibration procedure is proposed after an analysis of uncertain parameters. An optimized model is built according to calibration results of benchmark experiments including uniaxial compression test, confined compression test and Brazilian disc test in laboratory. The compression testing under different end friction, slenderness, loading rate and confining stress are systematically performed to investigate the external influences on rock fracturing. Boundary constraint is revealed in association with the macro failure pattern, in which the shearing slide leads to slight extension on ends and causes limited influence on the stress distribution in the far field. Effects on crack stresses are consistent with that of uniaxial compressive strength when the end friction takes effect. Slenderness affects the stress distribution and in turn changes the fracture pattern of rocks. Slight influence on the stress level of crack initiation and crack damage can be caused by the change of height-to-width ratio. Loading rate dramatically increase the rock strength based on two underlying mechanisms that the increase in overall number of micro cracks and the transition from intergranular fracturing to transgranular fracturing. These effects on crack initiation and crack damage stresses are inconsistent because the responses of normalized crack initiation and crack damage stresses subject to strain rate have inverse responses. The proportion of different micro cracks is shown to characterize the unchanged micro fracturing when the confining stress is increased. The enhancement of crack initiation and the change of the pattern of crack coalescence are attributed as the mechanism of confinement effect.
doi_str_mv 10.1016/j.ijrmms.2020.104219
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2431028650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1365160918309365</els_id><sourcerecordid>2431028650</sourcerecordid><originalsourceid>FETCH-LOGICAL-a423t-20b79cd75d5c16c58572b18b6321a1079e85ce3b62d45faadee3ca0e629f414a3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYsoOI7-AxcB1x2TNEnbjSCDLxhwo-uQJreddKbpmGQG3PjbTalrV_fBud_lnCy7JXhFMBH3_cr2fhjCimI6rRgl9Vm2IFVZ5Iwzfp76QvCcCFxfZlch9BhjQUW5yH7e3AlCtJ2K1nUobgFpr_QOWWejTcvRIeUMOvjxoLp5HkBvlbNhSCLUeBvjHpAf9S6gY5gonVfW5Y0KYFA7gSA3NmgPERDsYQAXEyRuR3OdXbRqH-Dmry6zz-enj_Vrvnl_eVs_bnLFaBFzipuy1qbkhmsiNK94SRtSNaKgRBFc1lBxDUUjqGG8VcoAFFphELRuGWGqWGZ3Mzf5-Domw7Ifj96ll5KygmBaCY6Tis0q7ccQPLTy4O2g_LckWE5Jy17OScspaTknnc4e5jNIDk4WvAzagtNgrAcdpRnt_4BfgpiLtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431028650</pqid></control><display><type>article</type><title>Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, X.F. ; Li, H.B. ; Liu, L.W. ; Liu, Y.Q. ; Ju, M.H. ; Zhao, J.</creator><creatorcontrib>Li, X.F. ; Li, H.B. ; Liu, L.W. ; Liu, Y.Q. ; Ju, M.H. ; Zhao, J.</creatorcontrib><description>Fracturing process and possible factors influencing crack initiation, propagation and coalescence of granitic rocks are investigated using a grain-based finite-discrete element method (GB-FDEM). In contrast to conventional methods, the GB-FDEM used herein consists of dual-scale contact models ensuring grain breakage, and pre-processing scheme for reproducing the realistic micro heterogeneity of rocks. A standardised calibration procedure is proposed after an analysis of uncertain parameters. An optimized model is built according to calibration results of benchmark experiments including uniaxial compression test, confined compression test and Brazilian disc test in laboratory. The compression testing under different end friction, slenderness, loading rate and confining stress are systematically performed to investigate the external influences on rock fracturing. Boundary constraint is revealed in association with the macro failure pattern, in which the shearing slide leads to slight extension on ends and causes limited influence on the stress distribution in the far field. Effects on crack stresses are consistent with that of uniaxial compressive strength when the end friction takes effect. Slenderness affects the stress distribution and in turn changes the fracture pattern of rocks. Slight influence on the stress level of crack initiation and crack damage can be caused by the change of height-to-width ratio. Loading rate dramatically increase the rock strength based on two underlying mechanisms that the increase in overall number of micro cracks and the transition from intergranular fracturing to transgranular fracturing. These effects on crack initiation and crack damage stresses are inconsistent because the responses of normalized crack initiation and crack damage stresses subject to strain rate have inverse responses. The proportion of different micro cracks is shown to characterize the unchanged micro fracturing when the confining stress is increased. The enhancement of crack initiation and the change of the pattern of crack coalescence are attributed as the mechanism of confinement effect.</description><identifier>ISSN: 1365-1609</identifier><identifier>EISSN: 1873-4545</identifier><identifier>DOI: 10.1016/j.ijrmms.2020.104219</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Breakage ; Calibration ; Coalescence ; Coalescing ; Compression ; Compression tests ; Compressive strength ; Confining ; Crack initiation ; Crack propagation ; Crack stress ; Damage ; Discrete element method ; Ductile-brittle transition ; Finite-discrete element model ; Fracturing ; Friction ; Heterogeneity ; Load distribution ; Loading rate ; Micro fracturing ; Parameter uncertainty ; Realistic granular model ; Rock heterogeneity ; Rocks ; Shearing ; Strain rate ; Stress ; Stress concentration ; Stress distribution ; Uncertainty analysis</subject><ispartof>International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2020-03, Vol.127, p.104219, Article 104219</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a423t-20b79cd75d5c16c58572b18b6321a1079e85ce3b62d45faadee3ca0e629f414a3</citedby><cites>FETCH-LOGICAL-a423t-20b79cd75d5c16c58572b18b6321a1079e85ce3b62d45faadee3ca0e629f414a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrmms.2020.104219$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Li, X.F.</creatorcontrib><creatorcontrib>Li, H.B.</creatorcontrib><creatorcontrib>Liu, L.W.</creatorcontrib><creatorcontrib>Liu, Y.Q.</creatorcontrib><creatorcontrib>Ju, M.H.</creatorcontrib><creatorcontrib>Zhao, J.</creatorcontrib><title>Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method</title><title>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</title><description>Fracturing process and possible factors influencing crack initiation, propagation and coalescence of granitic rocks are investigated using a grain-based finite-discrete element method (GB-FDEM). In contrast to conventional methods, the GB-FDEM used herein consists of dual-scale contact models ensuring grain breakage, and pre-processing scheme for reproducing the realistic micro heterogeneity of rocks. A standardised calibration procedure is proposed after an analysis of uncertain parameters. An optimized model is built according to calibration results of benchmark experiments including uniaxial compression test, confined compression test and Brazilian disc test in laboratory. The compression testing under different end friction, slenderness, loading rate and confining stress are systematically performed to investigate the external influences on rock fracturing. Boundary constraint is revealed in association with the macro failure pattern, in which the shearing slide leads to slight extension on ends and causes limited influence on the stress distribution in the far field. Effects on crack stresses are consistent with that of uniaxial compressive strength when the end friction takes effect. Slenderness affects the stress distribution and in turn changes the fracture pattern of rocks. Slight influence on the stress level of crack initiation and crack damage can be caused by the change of height-to-width ratio. Loading rate dramatically increase the rock strength based on two underlying mechanisms that the increase in overall number of micro cracks and the transition from intergranular fracturing to transgranular fracturing. These effects on crack initiation and crack damage stresses are inconsistent because the responses of normalized crack initiation and crack damage stresses subject to strain rate have inverse responses. The proportion of different micro cracks is shown to characterize the unchanged micro fracturing when the confining stress is increased. The enhancement of crack initiation and the change of the pattern of crack coalescence are attributed as the mechanism of confinement effect.</description><subject>Breakage</subject><subject>Calibration</subject><subject>Coalescence</subject><subject>Coalescing</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Compressive strength</subject><subject>Confining</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Crack stress</subject><subject>Damage</subject><subject>Discrete element method</subject><subject>Ductile-brittle transition</subject><subject>Finite-discrete element model</subject><subject>Fracturing</subject><subject>Friction</subject><subject>Heterogeneity</subject><subject>Load distribution</subject><subject>Loading rate</subject><subject>Micro fracturing</subject><subject>Parameter uncertainty</subject><subject>Realistic granular model</subject><subject>Rock heterogeneity</subject><subject>Rocks</subject><subject>Shearing</subject><subject>Strain rate</subject><subject>Stress</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Uncertainty analysis</subject><issn>1365-1609</issn><issn>1873-4545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYsoOI7-AxcB1x2TNEnbjSCDLxhwo-uQJreddKbpmGQG3PjbTalrV_fBud_lnCy7JXhFMBH3_cr2fhjCimI6rRgl9Vm2IFVZ5Iwzfp76QvCcCFxfZlch9BhjQUW5yH7e3AlCtJ2K1nUobgFpr_QOWWejTcvRIeUMOvjxoLp5HkBvlbNhSCLUeBvjHpAf9S6gY5gonVfW5Y0KYFA7gSA3NmgPERDsYQAXEyRuR3OdXbRqH-Dmry6zz-enj_Vrvnl_eVs_bnLFaBFzipuy1qbkhmsiNK94SRtSNaKgRBFc1lBxDUUjqGG8VcoAFFphELRuGWGqWGZ3Mzf5-Domw7Ifj96ll5KygmBaCY6Tis0q7ccQPLTy4O2g_LckWE5Jy17OScspaTknnc4e5jNIDk4WvAzagtNgrAcdpRnt_4BfgpiLtQ</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Li, X.F.</creator><creator>Li, H.B.</creator><creator>Liu, L.W.</creator><creator>Liu, Y.Q.</creator><creator>Ju, M.H.</creator><creator>Zhao, J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>202003</creationdate><title>Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method</title><author>Li, X.F. ; Li, H.B. ; Liu, L.W. ; Liu, Y.Q. ; Ju, M.H. ; Zhao, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a423t-20b79cd75d5c16c58572b18b6321a1079e85ce3b62d45faadee3ca0e629f414a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Breakage</topic><topic>Calibration</topic><topic>Coalescence</topic><topic>Coalescing</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Compressive strength</topic><topic>Confining</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Crack stress</topic><topic>Damage</topic><topic>Discrete element method</topic><topic>Ductile-brittle transition</topic><topic>Finite-discrete element model</topic><topic>Fracturing</topic><topic>Friction</topic><topic>Heterogeneity</topic><topic>Load distribution</topic><topic>Loading rate</topic><topic>Micro fracturing</topic><topic>Parameter uncertainty</topic><topic>Realistic granular model</topic><topic>Rock heterogeneity</topic><topic>Rocks</topic><topic>Shearing</topic><topic>Strain rate</topic><topic>Stress</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, X.F.</creatorcontrib><creatorcontrib>Li, H.B.</creatorcontrib><creatorcontrib>Liu, L.W.</creatorcontrib><creatorcontrib>Liu, Y.Q.</creatorcontrib><creatorcontrib>Ju, M.H.</creatorcontrib><creatorcontrib>Zhao, J.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, X.F.</au><au>Li, H.B.</au><au>Liu, L.W.</au><au>Liu, Y.Q.</au><au>Ju, M.H.</au><au>Zhao, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method</atitle><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle><date>2020-03</date><risdate>2020</risdate><volume>127</volume><spage>104219</spage><pages>104219-</pages><artnum>104219</artnum><issn>1365-1609</issn><eissn>1873-4545</eissn><abstract>Fracturing process and possible factors influencing crack initiation, propagation and coalescence of granitic rocks are investigated using a grain-based finite-discrete element method (GB-FDEM). In contrast to conventional methods, the GB-FDEM used herein consists of dual-scale contact models ensuring grain breakage, and pre-processing scheme for reproducing the realistic micro heterogeneity of rocks. A standardised calibration procedure is proposed after an analysis of uncertain parameters. An optimized model is built according to calibration results of benchmark experiments including uniaxial compression test, confined compression test and Brazilian disc test in laboratory. The compression testing under different end friction, slenderness, loading rate and confining stress are systematically performed to investigate the external influences on rock fracturing. Boundary constraint is revealed in association with the macro failure pattern, in which the shearing slide leads to slight extension on ends and causes limited influence on the stress distribution in the far field. Effects on crack stresses are consistent with that of uniaxial compressive strength when the end friction takes effect. Slenderness affects the stress distribution and in turn changes the fracture pattern of rocks. Slight influence on the stress level of crack initiation and crack damage can be caused by the change of height-to-width ratio. Loading rate dramatically increase the rock strength based on two underlying mechanisms that the increase in overall number of micro cracks and the transition from intergranular fracturing to transgranular fracturing. These effects on crack initiation and crack damage stresses are inconsistent because the responses of normalized crack initiation and crack damage stresses subject to strain rate have inverse responses. The proportion of different micro cracks is shown to characterize the unchanged micro fracturing when the confining stress is increased. The enhancement of crack initiation and the change of the pattern of crack coalescence are attributed as the mechanism of confinement effect.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmms.2020.104219</doi></addata></record>
fulltext fulltext
identifier ISSN: 1365-1609
ispartof International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2020-03, Vol.127, p.104219, Article 104219
issn 1365-1609
1873-4545
language eng
recordid cdi_proquest_journals_2431028650
source Elsevier ScienceDirect Journals Complete
subjects Breakage
Calibration
Coalescence
Coalescing
Compression
Compression tests
Compressive strength
Confining
Crack initiation
Crack propagation
Crack stress
Damage
Discrete element method
Ductile-brittle transition
Finite-discrete element model
Fracturing
Friction
Heterogeneity
Load distribution
Loading rate
Micro fracturing
Parameter uncertainty
Realistic granular model
Rock heterogeneity
Rocks
Shearing
Strain rate
Stress
Stress concentration
Stress distribution
Uncertainty analysis
title Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A49%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20crack%20initiation%20and%20propagation%20mechanism%20in%20brittle%20rocks%20using%20grain-based%20finite-discrete%20element%20method&rft.jtitle=International%20journal%20of%20rock%20mechanics%20and%20mining%20sciences%20(Oxford,%20England%20:%201997)&rft.au=Li,%20X.F.&rft.date=2020-03&rft.volume=127&rft.spage=104219&rft.pages=104219-&rft.artnum=104219&rft.issn=1365-1609&rft.eissn=1873-4545&rft_id=info:doi/10.1016/j.ijrmms.2020.104219&rft_dat=%3Cproquest_cross%3E2431028650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431028650&rft_id=info:pmid/&rft_els_id=S1365160918309365&rfr_iscdi=true