NONPARAMETRIC BAYESIAN ANALYSIS OF THE COMPOUND POISSON PRIOR FOR SUPPORT BOUNDARY RECOVERY

Given data from a Poisson point process with intensity (x, y) ↦ n₁ (f(x) ≤ y), frequentist properties for the Bayesian reconstruction of the support boundary function f are derived. We mainly study compound Poisson process priors with fixed intensity proving that the posterior contracts with nearly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2020-06, Vol.48 (3), p.1432-1451
Hauptverfasser: Reiss, Markus, Schmidt-Hieber, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1451
container_issue 3
container_start_page 1432
container_title The Annals of statistics
container_volume 48
creator Reiss, Markus
Schmidt-Hieber, Johannes
description Given data from a Poisson point process with intensity (x, y) ↦ n₁ (f(x) ≤ y), frequentist properties for the Bayesian reconstruction of the support boundary function f are derived. We mainly study compound Poisson process priors with fixed intensity proving that the posterior contracts with nearly optimal rate for monotone support boundaries and adapts to Hölder smooth boundaries. We then derive a limiting shape result for a compound Poisson process prior and a function space with increasing parameter dimension. It is shown that the marginal posterior of the mean functional performs an automatic bias correction and contracts with a faster rate than the MLE. In this case, (1 – α)-credible sets are also asymptotic (1 – α)-confidence intervals. As a negative result, it is shown that the frequentist coverage of credible sets is lost for linear functions f outside the function class.
doi_str_mv 10.1214/19-AOS1853
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2431028502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26931517</jstor_id><sourcerecordid>26931517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-a86ef3a1caa4e5426296e1470fd10395bda8577a6afb740585600101dbbedf983</originalsourceid><addsrcrecordid>eNo90MFLwzAUBvAgCs7pxbsQ8CZU85ImTY5Z7Vxha0raCcVDSdcWHGq13Q7-93ZseHi8w_vxPfgQugXyCBT8J1CeNhlIzs7QhIKQnlRCnKMJIYp4nAn_El0Nw5YQwpXPJugtMUmqrV5FuY1DPNNFlMU6wTrRyyKLM2zmOF9EODSr1KyTZ5yaOMtMglMbG4vn42TrNDU2x7PDXdsC2yg0r5EtrtFF6z6G5ua0p2g9j_Jw4S3NSxzqpbdhEOw8J0XTMgcb5_yG-1RQJRrwA9LWQJjiVe0kDwInXFsFPuGSC0KAQF1VTd0qyabo_pj73Xc_-2bYldtu33-NL0vqMyBUckJH9XBUm74bhr5py-_-_dP1vyWQ8lBeCao8lTfiuyPeDruu_5dUKAYcAvYHjf5ikQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431028502</pqid></control><display><type>article</type><title>NONPARAMETRIC BAYESIAN ANALYSIS OF THE COMPOUND POISSON PRIOR FOR SUPPORT BOUNDARY RECOVERY</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Reiss, Markus ; Schmidt-Hieber, Johannes</creator><creatorcontrib>Reiss, Markus ; Schmidt-Hieber, Johannes</creatorcontrib><description>Given data from a Poisson point process with intensity (x, y) ↦ n₁ (f(x) ≤ y), frequentist properties for the Bayesian reconstruction of the support boundary function f are derived. We mainly study compound Poisson process priors with fixed intensity proving that the posterior contracts with nearly optimal rate for monotone support boundaries and adapts to Hölder smooth boundaries. We then derive a limiting shape result for a compound Poisson process prior and a function space with increasing parameter dimension. It is shown that the marginal posterior of the mean functional performs an automatic bias correction and contracts with a faster rate than the MLE. In this case, (1 – α)-credible sets are also asymptotic (1 – α)-confidence intervals. As a negative result, it is shown that the frequentist coverage of credible sets is lost for linear functions f outside the function class.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/19-AOS1853</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Bayesian analysis ; Boundary conditions ; Confidence intervals ; Contracts ; Data recovery ; Function space ; Linear functions ; Nonparametric statistics ; Poisson density functions ; Poisson distribution ; Smooth boundaries ; Statistical analysis</subject><ispartof>The Annals of statistics, 2020-06, Vol.48 (3), p.1432-1451</ispartof><rights>Institute of Mathematical Statistics, 2020</rights><rights>Copyright Institute of Mathematical Statistics Jun 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-a86ef3a1caa4e5426296e1470fd10395bda8577a6afb740585600101dbbedf983</citedby><cites>FETCH-LOGICAL-c317t-a86ef3a1caa4e5426296e1470fd10395bda8577a6afb740585600101dbbedf983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26931517$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26931517$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Reiss, Markus</creatorcontrib><creatorcontrib>Schmidt-Hieber, Johannes</creatorcontrib><title>NONPARAMETRIC BAYESIAN ANALYSIS OF THE COMPOUND POISSON PRIOR FOR SUPPORT BOUNDARY RECOVERY</title><title>The Annals of statistics</title><description>Given data from a Poisson point process with intensity (x, y) ↦ n₁ (f(x) ≤ y), frequentist properties for the Bayesian reconstruction of the support boundary function f are derived. We mainly study compound Poisson process priors with fixed intensity proving that the posterior contracts with nearly optimal rate for monotone support boundaries and adapts to Hölder smooth boundaries. We then derive a limiting shape result for a compound Poisson process prior and a function space with increasing parameter dimension. It is shown that the marginal posterior of the mean functional performs an automatic bias correction and contracts with a faster rate than the MLE. In this case, (1 – α)-credible sets are also asymptotic (1 – α)-confidence intervals. As a negative result, it is shown that the frequentist coverage of credible sets is lost for linear functions f outside the function class.</description><subject>Bayesian analysis</subject><subject>Boundary conditions</subject><subject>Confidence intervals</subject><subject>Contracts</subject><subject>Data recovery</subject><subject>Function space</subject><subject>Linear functions</subject><subject>Nonparametric statistics</subject><subject>Poisson density functions</subject><subject>Poisson distribution</subject><subject>Smooth boundaries</subject><subject>Statistical analysis</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo90MFLwzAUBvAgCs7pxbsQ8CZU85ImTY5Z7Vxha0raCcVDSdcWHGq13Q7-93ZseHi8w_vxPfgQugXyCBT8J1CeNhlIzs7QhIKQnlRCnKMJIYp4nAn_El0Nw5YQwpXPJugtMUmqrV5FuY1DPNNFlMU6wTrRyyKLM2zmOF9EODSr1KyTZ5yaOMtMglMbG4vn42TrNDU2x7PDXdsC2yg0r5EtrtFF6z6G5ua0p2g9j_Jw4S3NSxzqpbdhEOw8J0XTMgcb5_yG-1RQJRrwA9LWQJjiVe0kDwInXFsFPuGSC0KAQF1VTd0qyabo_pj73Xc_-2bYldtu33-NL0vqMyBUckJH9XBUm74bhr5py-_-_dP1vyWQ8lBeCao8lTfiuyPeDruu_5dUKAYcAvYHjf5ikQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Reiss, Markus</creator><creator>Schmidt-Hieber, Johannes</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20200601</creationdate><title>NONPARAMETRIC BAYESIAN ANALYSIS OF THE COMPOUND POISSON PRIOR FOR SUPPORT BOUNDARY RECOVERY</title><author>Reiss, Markus ; Schmidt-Hieber, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-a86ef3a1caa4e5426296e1470fd10395bda8577a6afb740585600101dbbedf983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Boundary conditions</topic><topic>Confidence intervals</topic><topic>Contracts</topic><topic>Data recovery</topic><topic>Function space</topic><topic>Linear functions</topic><topic>Nonparametric statistics</topic><topic>Poisson density functions</topic><topic>Poisson distribution</topic><topic>Smooth boundaries</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reiss, Markus</creatorcontrib><creatorcontrib>Schmidt-Hieber, Johannes</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reiss, Markus</au><au>Schmidt-Hieber, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NONPARAMETRIC BAYESIAN ANALYSIS OF THE COMPOUND POISSON PRIOR FOR SUPPORT BOUNDARY RECOVERY</atitle><jtitle>The Annals of statistics</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>48</volume><issue>3</issue><spage>1432</spage><epage>1451</epage><pages>1432-1451</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>Given data from a Poisson point process with intensity (x, y) ↦ n₁ (f(x) ≤ y), frequentist properties for the Bayesian reconstruction of the support boundary function f are derived. We mainly study compound Poisson process priors with fixed intensity proving that the posterior contracts with nearly optimal rate for monotone support boundaries and adapts to Hölder smooth boundaries. We then derive a limiting shape result for a compound Poisson process prior and a function space with increasing parameter dimension. It is shown that the marginal posterior of the mean functional performs an automatic bias correction and contracts with a faster rate than the MLE. In this case, (1 – α)-credible sets are also asymptotic (1 – α)-confidence intervals. As a negative result, it is shown that the frequentist coverage of credible sets is lost for linear functions f outside the function class.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/19-AOS1853</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2020-06, Vol.48 (3), p.1432-1451
issn 0090-5364
2168-8966
language eng
recordid cdi_proquest_journals_2431028502
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects Bayesian analysis
Boundary conditions
Confidence intervals
Contracts
Data recovery
Function space
Linear functions
Nonparametric statistics
Poisson density functions
Poisson distribution
Smooth boundaries
Statistical analysis
title NONPARAMETRIC BAYESIAN ANALYSIS OF THE COMPOUND POISSON PRIOR FOR SUPPORT BOUNDARY RECOVERY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NONPARAMETRIC%20BAYESIAN%20ANALYSIS%20OF%20THE%20COMPOUND%20POISSON%20PRIOR%20FOR%20SUPPORT%20BOUNDARY%20RECOVERY&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Reiss,%20Markus&rft.date=2020-06-01&rft.volume=48&rft.issue=3&rft.spage=1432&rft.epage=1451&rft.pages=1432-1451&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/19-AOS1853&rft_dat=%3Cjstor_proqu%3E26931517%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431028502&rft_id=info:pmid/&rft_jstor_id=26931517&rfr_iscdi=true