Rules for Selecting Metal Cocatalyst Based on Charge Transfer and Separation Efficiency between ZnO Nanoparticles and Noble Metal Cocatalyst Ag/ Au/ Pt
Loading metal cocatalyst on semiconductor nanoparticles is a general strategy to enhance photocatalytic efficiency, while the consensus of selecting metal cocatalyst matching with semiconductor is still unclear. Herein, we investigated the charge transfer and separation efficiency between ZnO and co...
Gespeichert in:
Veröffentlicht in: | ChemCatChem 2020-08, Vol.12 (15), p.3838-3842 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3842 |
---|---|
container_issue | 15 |
container_start_page | 3838 |
container_title | ChemCatChem |
container_volume | 12 |
creator | Liu, Qianxia Wang, Zhuan Chen, Hailong Wang, Hao‐Yi Song, Hui Ye, Jinhua Weng, Yuxiang |
description | Loading metal cocatalyst on semiconductor nanoparticles is a general strategy to enhance photocatalytic efficiency, while the consensus of selecting metal cocatalyst matching with semiconductor is still unclear. Herein, we investigated the charge transfer and separation efficiency between ZnO and cocatalysts Ag, Au, and Pt nanoparticles respectively using ultrafast mid‐IR transient absorption spectroscopy. We found that Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer from ZnO to metal. Thus Ohmic contact would be better than Schottky contact. Since photocatalytic efficiency is also determined by chemical catalytic efficiency, we proposed a dual metal cocatalyst strategy for improving the overall photocatalytic efficiency, with the inner metal forming Ohmic contact for efficient charge separation and shuttling electrons and the outer‐layer metal cocatalyst for optimizing the chemical reactivity.
Photocatalysis: Interfacial charge transfer and separation efficiencies for ZnO nanoparticles and metal cocatalysts Ag, Au and Pt respectively were investigated by ultrafast mid‐IR transient absorption spectroscopy. Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer. A dual metal cocatalyst strategy is proposed for selection of the metal catalysis with the inner metal for efficient charge transfer and electron shuttle, and the outer‐layer metal for the optimal chemical reactivity. |
doi_str_mv | 10.1002/cctc.202000280 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2430941229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430941229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-60513c329091831916e511ed5c478b05745bce6b63b85d7404c8633687028ffc3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhCMEEqVw5WyJc1o7zsM-lqg8pFIQlAuXyHE2JVWwi-2oyi_h7-KoqBw4cJpd7Xw70gTBJcETgnE0ldLJSYQj7BeGj4IRYWkWUsb58WFm-DQ4s3aDccpployCr-euBYtqbdALtCBdo9boAZxoUa6l8Npbh66FhQpphfJ3YdaAVkYoW4NBQlWe2wojXOPP87puZANK9qgEtwNQ6E09oqVQ2ntcI4esgVnqsoW_ObP1FM26KXpy58FJLVoLFz86Dl5v5qv8Llw83t7ns0UoKclwmOKEUEkjjjlhlHCSQkIIVImMM1biJIuTUkJaprRkSZXFOJYspTRlme-oriUdB1f7v1ujPzuwrtjozigfWUQxxTwmUcS9a7J3SaOtNVAXW9N8CNMXBBdD-cVQfnEo3wN8D-yaFvp_3EWer_Jf9huBJIe7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430941229</pqid></control><display><type>article</type><title>Rules for Selecting Metal Cocatalyst Based on Charge Transfer and Separation Efficiency between ZnO Nanoparticles and Noble Metal Cocatalyst Ag/ Au/ Pt</title><source>Wiley Online Library All Journals</source><creator>Liu, Qianxia ; Wang, Zhuan ; Chen, Hailong ; Wang, Hao‐Yi ; Song, Hui ; Ye, Jinhua ; Weng, Yuxiang</creator><creatorcontrib>Liu, Qianxia ; Wang, Zhuan ; Chen, Hailong ; Wang, Hao‐Yi ; Song, Hui ; Ye, Jinhua ; Weng, Yuxiang</creatorcontrib><description>Loading metal cocatalyst on semiconductor nanoparticles is a general strategy to enhance photocatalytic efficiency, while the consensus of selecting metal cocatalyst matching with semiconductor is still unclear. Herein, we investigated the charge transfer and separation efficiency between ZnO and cocatalysts Ag, Au, and Pt nanoparticles respectively using ultrafast mid‐IR transient absorption spectroscopy. We found that Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer from ZnO to metal. Thus Ohmic contact would be better than Schottky contact. Since photocatalytic efficiency is also determined by chemical catalytic efficiency, we proposed a dual metal cocatalyst strategy for improving the overall photocatalytic efficiency, with the inner metal forming Ohmic contact for efficient charge separation and shuttling electrons and the outer‐layer metal cocatalyst for optimizing the chemical reactivity.
Photocatalysis: Interfacial charge transfer and separation efficiencies for ZnO nanoparticles and metal cocatalysts Ag, Au and Pt respectively were investigated by ultrafast mid‐IR transient absorption spectroscopy. Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer. A dual metal cocatalyst strategy is proposed for selection of the metal catalysis with the inner metal for efficient charge transfer and electron shuttle, and the outer‐layer metal for the optimal chemical reactivity.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202000280</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Charge efficiency ; Charge transfer ; Contact resistance ; Efficiency ; Electron transfer ; Gold ; Infrared spectroscopy ; Metal forming ; Metal-semiconductor heterojunction ; Nanoparticles ; Noble metals ; Photocatalysis ; Platinum ; Separation ; Silver ; Ultrafast charge transfer ; Zinc oxide ; Zinc oxide (ZnO)</subject><ispartof>ChemCatChem, 2020-08, Vol.12 (15), p.3838-3842</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3170-60513c329091831916e511ed5c478b05745bce6b63b85d7404c8633687028ffc3</citedby><cites>FETCH-LOGICAL-c3170-60513c329091831916e511ed5c478b05745bce6b63b85d7404c8633687028ffc3</cites><orcidid>0000-0003-0423-2266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.202000280$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.202000280$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Liu, Qianxia</creatorcontrib><creatorcontrib>Wang, Zhuan</creatorcontrib><creatorcontrib>Chen, Hailong</creatorcontrib><creatorcontrib>Wang, Hao‐Yi</creatorcontrib><creatorcontrib>Song, Hui</creatorcontrib><creatorcontrib>Ye, Jinhua</creatorcontrib><creatorcontrib>Weng, Yuxiang</creatorcontrib><title>Rules for Selecting Metal Cocatalyst Based on Charge Transfer and Separation Efficiency between ZnO Nanoparticles and Noble Metal Cocatalyst Ag/ Au/ Pt</title><title>ChemCatChem</title><description>Loading metal cocatalyst on semiconductor nanoparticles is a general strategy to enhance photocatalytic efficiency, while the consensus of selecting metal cocatalyst matching with semiconductor is still unclear. Herein, we investigated the charge transfer and separation efficiency between ZnO and cocatalysts Ag, Au, and Pt nanoparticles respectively using ultrafast mid‐IR transient absorption spectroscopy. We found that Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer from ZnO to metal. Thus Ohmic contact would be better than Schottky contact. Since photocatalytic efficiency is also determined by chemical catalytic efficiency, we proposed a dual metal cocatalyst strategy for improving the overall photocatalytic efficiency, with the inner metal forming Ohmic contact for efficient charge separation and shuttling electrons and the outer‐layer metal cocatalyst for optimizing the chemical reactivity.
Photocatalysis: Interfacial charge transfer and separation efficiencies for ZnO nanoparticles and metal cocatalysts Ag, Au and Pt respectively were investigated by ultrafast mid‐IR transient absorption spectroscopy. Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer. A dual metal cocatalyst strategy is proposed for selection of the metal catalysis with the inner metal for efficient charge transfer and electron shuttle, and the outer‐layer metal for the optimal chemical reactivity.</description><subject>Charge efficiency</subject><subject>Charge transfer</subject><subject>Contact resistance</subject><subject>Efficiency</subject><subject>Electron transfer</subject><subject>Gold</subject><subject>Infrared spectroscopy</subject><subject>Metal forming</subject><subject>Metal-semiconductor heterojunction</subject><subject>Nanoparticles</subject><subject>Noble metals</subject><subject>Photocatalysis</subject><subject>Platinum</subject><subject>Separation</subject><subject>Silver</subject><subject>Ultrafast charge transfer</subject><subject>Zinc oxide</subject><subject>Zinc oxide (ZnO)</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhCMEEqVw5WyJc1o7zsM-lqg8pFIQlAuXyHE2JVWwi-2oyi_h7-KoqBw4cJpd7Xw70gTBJcETgnE0ldLJSYQj7BeGj4IRYWkWUsb58WFm-DQ4s3aDccpployCr-euBYtqbdALtCBdo9boAZxoUa6l8Npbh66FhQpphfJ3YdaAVkYoW4NBQlWe2wojXOPP87puZANK9qgEtwNQ6E09oqVQ2ntcI4esgVnqsoW_ObP1FM26KXpy58FJLVoLFz86Dl5v5qv8Llw83t7ns0UoKclwmOKEUEkjjjlhlHCSQkIIVImMM1biJIuTUkJaprRkSZXFOJYspTRlme-oriUdB1f7v1ujPzuwrtjozigfWUQxxTwmUcS9a7J3SaOtNVAXW9N8CNMXBBdD-cVQfnEo3wN8D-yaFvp_3EWer_Jf9huBJIe7</recordid><startdate>20200806</startdate><enddate>20200806</enddate><creator>Liu, Qianxia</creator><creator>Wang, Zhuan</creator><creator>Chen, Hailong</creator><creator>Wang, Hao‐Yi</creator><creator>Song, Hui</creator><creator>Ye, Jinhua</creator><creator>Weng, Yuxiang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0423-2266</orcidid></search><sort><creationdate>20200806</creationdate><title>Rules for Selecting Metal Cocatalyst Based on Charge Transfer and Separation Efficiency between ZnO Nanoparticles and Noble Metal Cocatalyst Ag/ Au/ Pt</title><author>Liu, Qianxia ; Wang, Zhuan ; Chen, Hailong ; Wang, Hao‐Yi ; Song, Hui ; Ye, Jinhua ; Weng, Yuxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-60513c329091831916e511ed5c478b05745bce6b63b85d7404c8633687028ffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge efficiency</topic><topic>Charge transfer</topic><topic>Contact resistance</topic><topic>Efficiency</topic><topic>Electron transfer</topic><topic>Gold</topic><topic>Infrared spectroscopy</topic><topic>Metal forming</topic><topic>Metal-semiconductor heterojunction</topic><topic>Nanoparticles</topic><topic>Noble metals</topic><topic>Photocatalysis</topic><topic>Platinum</topic><topic>Separation</topic><topic>Silver</topic><topic>Ultrafast charge transfer</topic><topic>Zinc oxide</topic><topic>Zinc oxide (ZnO)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qianxia</creatorcontrib><creatorcontrib>Wang, Zhuan</creatorcontrib><creatorcontrib>Chen, Hailong</creatorcontrib><creatorcontrib>Wang, Hao‐Yi</creatorcontrib><creatorcontrib>Song, Hui</creatorcontrib><creatorcontrib>Ye, Jinhua</creatorcontrib><creatorcontrib>Weng, Yuxiang</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qianxia</au><au>Wang, Zhuan</au><au>Chen, Hailong</au><au>Wang, Hao‐Yi</au><au>Song, Hui</au><au>Ye, Jinhua</au><au>Weng, Yuxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rules for Selecting Metal Cocatalyst Based on Charge Transfer and Separation Efficiency between ZnO Nanoparticles and Noble Metal Cocatalyst Ag/ Au/ Pt</atitle><jtitle>ChemCatChem</jtitle><date>2020-08-06</date><risdate>2020</risdate><volume>12</volume><issue>15</issue><spage>3838</spage><epage>3842</epage><pages>3838-3842</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Loading metal cocatalyst on semiconductor nanoparticles is a general strategy to enhance photocatalytic efficiency, while the consensus of selecting metal cocatalyst matching with semiconductor is still unclear. Herein, we investigated the charge transfer and separation efficiency between ZnO and cocatalysts Ag, Au, and Pt nanoparticles respectively using ultrafast mid‐IR transient absorption spectroscopy. We found that Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer from ZnO to metal. Thus Ohmic contact would be better than Schottky contact. Since photocatalytic efficiency is also determined by chemical catalytic efficiency, we proposed a dual metal cocatalyst strategy for improving the overall photocatalytic efficiency, with the inner metal forming Ohmic contact for efficient charge separation and shuttling electrons and the outer‐layer metal cocatalyst for optimizing the chemical reactivity.
Photocatalysis: Interfacial charge transfer and separation efficiencies for ZnO nanoparticles and metal cocatalysts Ag, Au and Pt respectively were investigated by ultrafast mid‐IR transient absorption spectroscopy. Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer. A dual metal cocatalyst strategy is proposed for selection of the metal catalysis with the inner metal for efficient charge transfer and electron shuttle, and the outer‐layer metal for the optimal chemical reactivity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202000280</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0423-2266</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-3880 |
ispartof | ChemCatChem, 2020-08, Vol.12 (15), p.3838-3842 |
issn | 1867-3880 1867-3899 |
language | eng |
recordid | cdi_proquest_journals_2430941229 |
source | Wiley Online Library All Journals |
subjects | Charge efficiency Charge transfer Contact resistance Efficiency Electron transfer Gold Infrared spectroscopy Metal forming Metal-semiconductor heterojunction Nanoparticles Noble metals Photocatalysis Platinum Separation Silver Ultrafast charge transfer Zinc oxide Zinc oxide (ZnO) |
title | Rules for Selecting Metal Cocatalyst Based on Charge Transfer and Separation Efficiency between ZnO Nanoparticles and Noble Metal Cocatalyst Ag/ Au/ Pt |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rules%20for%20Selecting%20Metal%20Cocatalyst%20Based%20on%20Charge%20Transfer%20and%20Separation%20Efficiency%20between%20ZnO%20Nanoparticles%20and%20Noble%20Metal%20Cocatalyst%20Ag/%20Au/%20Pt&rft.jtitle=ChemCatChem&rft.au=Liu,%20Qianxia&rft.date=2020-08-06&rft.volume=12&rft.issue=15&rft.spage=3838&rft.epage=3842&rft.pages=3838-3842&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202000280&rft_dat=%3Cproquest_cross%3E2430941229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430941229&rft_id=info:pmid/&rfr_iscdi=true |