Boosting Ultrafast Lithium Storage Capability of Hierarchical Core/Shell Constructed Carbon Nanofiber/3D Interconnected Hybrid Network with Nanocarbon and FTO Nanoparticle Heterostructures

The aim of the study involves accelerating ultrafast electrochemical behavior of lithium‐ion batteries (LIBs) by proposing hierarchical core/shell heterostructure of carbon nanofiber (CNF)/3D interconnected hybrid network with nanocarbon and fluorine‐doped tin oxide (FTO) nanoparticles (NPs) via a o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-08, Vol.30 (32), p.n/a
Hauptverfasser: Koo, Bon‐Ryul, Sung, Ki‐Wook, Ahn, Hyo‐Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page
container_title Advanced functional materials
container_volume 30
creator Koo, Bon‐Ryul
Sung, Ki‐Wook
Ahn, Hyo‐Jin
description The aim of the study involves accelerating ultrafast electrochemical behavior of lithium‐ion batteries (LIBs) by proposing hierarchical core/shell heterostructure of carbon nanofiber (CNF)/3D interconnected hybrid network with nanocarbon and fluorine‐doped tin oxide (FTO) nanoparticles (NPs) via a one‐pot process of horizontal ultrasonic spray pyrolysis deposition. This is constructed via a pyrolysis reaction of ketjen black forming 3D interconnected FTO NPs covered with nanocarbon network on CNF. It offers fast electrical conductivity to the overall electrode with improved Li ion diffusion due to decreased size effect and relaxed structural variation of FTO NPs via nanocarbon network, leading to high discharge capacity (868.7 mAh g−1 after 100 cycles) at 100 mA g−1 and superior rate capability. Nevertheless, at extremely high current density (2000 mA g−1), significant ultrafast electrochemical performances with reversible discharge capacity (444.4 mAh g−1) and long‐term cycling retention (89.9% after 500 cycles) are noted. This is attributed to the novel effects of 3D interconnected hybrid network accelerating receptive capacity of Li ions into the FTO NPs via nanocarbon network, delivery of formed Li ions and electrons by hybrid network with FTO NP and nanocarbon, and prevention of FTO NP pulverization from CNFs via nanocarbon network. Therefore, the proposed heterostructure holds significant promise for effective development of ultrafast anode material for enhancing the practical applications of LIBs. A hierarchical core/shell heterostructure consisting of a carbon nanofiber (CNF)/3D interconnected hybrid network with nanocarbon and fluorine‐doped tin oxide (FTO) nanoparticles (NP) is developed via a one‐pot process of horizontal ultrasonic spray pyrolysis deposition. This heterostructure facilitates desirable receptive capacity of Li ions into the FTO NPs and prevention of FTO NP pulverization from the CNF via a nanocarbon network and efficient charge transportation via the hybrid network, boosting ultrafast lithium storage capability.
doi_str_mv 10.1002/adfm.202001863
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2430939644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430939644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3563-e6fda5cfaa44a893fafed7a1570848aea0e30aa8456c401ae6a7c70dd91711ad3</originalsourceid><addsrcrecordid>eNqFkU1PGzEQhleISgXaa8-WOCex185-HCEQgpTCAZB6W03sMTFs7DD2Ksp_64_rJlvRY08eWc8z70hvlv0QfCw4zydg7Gac85xzURXyJDsThShGkufV6ecsfn3NzmN865mylOos-30dQkzOv7KXNhFYiIktXVq7bsOeUiB4RTaDLaxc69KeBcsWDglIr52Gls0C4eRpje1h9DFRpxOa3qBV8OwBfLBuhTSRN-zeJyQdvMcjstivyBn2gGkX6J3t-swjrwcVvGHz58fj1xYoOd0iW2C_IgwpHWH8ln2x0Eb8_ve9yF7mt8-zxWj5eHc_u1qOtJwWcoSFNTDVFkApqGppwaIpQUxLXqkKEDhKDlCpaaEVF4AFlLrkxtSiFAKMvMguh71bCh8dxtS8hY58H9nkSvJa1oVSPTUeKN3fGAltsyW3Ado3gjeHhppDQ81nQ71QD8LOtbj_D91c3cx__nP_AE67mjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430939644</pqid></control><display><type>article</type><title>Boosting Ultrafast Lithium Storage Capability of Hierarchical Core/Shell Constructed Carbon Nanofiber/3D Interconnected Hybrid Network with Nanocarbon and FTO Nanoparticle Heterostructures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Koo, Bon‐Ryul ; Sung, Ki‐Wook ; Ahn, Hyo‐Jin</creator><creatorcontrib>Koo, Bon‐Ryul ; Sung, Ki‐Wook ; Ahn, Hyo‐Jin</creatorcontrib><description>The aim of the study involves accelerating ultrafast electrochemical behavior of lithium‐ion batteries (LIBs) by proposing hierarchical core/shell heterostructure of carbon nanofiber (CNF)/3D interconnected hybrid network with nanocarbon and fluorine‐doped tin oxide (FTO) nanoparticles (NPs) via a one‐pot process of horizontal ultrasonic spray pyrolysis deposition. This is constructed via a pyrolysis reaction of ketjen black forming 3D interconnected FTO NPs covered with nanocarbon network on CNF. It offers fast electrical conductivity to the overall electrode with improved Li ion diffusion due to decreased size effect and relaxed structural variation of FTO NPs via nanocarbon network, leading to high discharge capacity (868.7 mAh g−1 after 100 cycles) at 100 mA g−1 and superior rate capability. Nevertheless, at extremely high current density (2000 mA g−1), significant ultrafast electrochemical performances with reversible discharge capacity (444.4 mAh g−1) and long‐term cycling retention (89.9% after 500 cycles) are noted. This is attributed to the novel effects of 3D interconnected hybrid network accelerating receptive capacity of Li ions into the FTO NPs via nanocarbon network, delivery of formed Li ions and electrons by hybrid network with FTO NP and nanocarbon, and prevention of FTO NP pulverization from CNFs via nanocarbon network. Therefore, the proposed heterostructure holds significant promise for effective development of ultrafast anode material for enhancing the practical applications of LIBs. A hierarchical core/shell heterostructure consisting of a carbon nanofiber (CNF)/3D interconnected hybrid network with nanocarbon and fluorine‐doped tin oxide (FTO) nanoparticles (NP) is developed via a one‐pot process of horizontal ultrasonic spray pyrolysis deposition. This heterostructure facilitates desirable receptive capacity of Li ions into the FTO NPs and prevention of FTO NP pulverization from the CNF via a nanocarbon network and efficient charge transportation via the hybrid network, boosting ultrafast lithium storage capability.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202001863</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>3D interconnected hybrid network ; Anode effect ; Carbon fibers ; core/shell heterostructure ; Diffusion rate ; Electrical resistivity ; Electrochemical analysis ; Electrode materials ; Fluorine ; Heterostructures ; Ion diffusion ; Lithium-ion batteries ; Li‐ion battery ; Materials science ; Nanofibers ; Nanoparticles ; one‐pot construction ; Size effects ; Spray pyrolysis ; Tin oxides ; ultrafast capability</subject><ispartof>Advanced functional materials, 2020-08, Vol.30 (32), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3563-e6fda5cfaa44a893fafed7a1570848aea0e30aa8456c401ae6a7c70dd91711ad3</citedby><cites>FETCH-LOGICAL-c3563-e6fda5cfaa44a893fafed7a1570848aea0e30aa8456c401ae6a7c70dd91711ad3</cites><orcidid>0000-0002-5786-3937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202001863$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202001863$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Koo, Bon‐Ryul</creatorcontrib><creatorcontrib>Sung, Ki‐Wook</creatorcontrib><creatorcontrib>Ahn, Hyo‐Jin</creatorcontrib><title>Boosting Ultrafast Lithium Storage Capability of Hierarchical Core/Shell Constructed Carbon Nanofiber/3D Interconnected Hybrid Network with Nanocarbon and FTO Nanoparticle Heterostructures</title><title>Advanced functional materials</title><description>The aim of the study involves accelerating ultrafast electrochemical behavior of lithium‐ion batteries (LIBs) by proposing hierarchical core/shell heterostructure of carbon nanofiber (CNF)/3D interconnected hybrid network with nanocarbon and fluorine‐doped tin oxide (FTO) nanoparticles (NPs) via a one‐pot process of horizontal ultrasonic spray pyrolysis deposition. This is constructed via a pyrolysis reaction of ketjen black forming 3D interconnected FTO NPs covered with nanocarbon network on CNF. It offers fast electrical conductivity to the overall electrode with improved Li ion diffusion due to decreased size effect and relaxed structural variation of FTO NPs via nanocarbon network, leading to high discharge capacity (868.7 mAh g−1 after 100 cycles) at 100 mA g−1 and superior rate capability. Nevertheless, at extremely high current density (2000 mA g−1), significant ultrafast electrochemical performances with reversible discharge capacity (444.4 mAh g−1) and long‐term cycling retention (89.9% after 500 cycles) are noted. This is attributed to the novel effects of 3D interconnected hybrid network accelerating receptive capacity of Li ions into the FTO NPs via nanocarbon network, delivery of formed Li ions and electrons by hybrid network with FTO NP and nanocarbon, and prevention of FTO NP pulverization from CNFs via nanocarbon network. Therefore, the proposed heterostructure holds significant promise for effective development of ultrafast anode material for enhancing the practical applications of LIBs. A hierarchical core/shell heterostructure consisting of a carbon nanofiber (CNF)/3D interconnected hybrid network with nanocarbon and fluorine‐doped tin oxide (FTO) nanoparticles (NP) is developed via a one‐pot process of horizontal ultrasonic spray pyrolysis deposition. This heterostructure facilitates desirable receptive capacity of Li ions into the FTO NPs and prevention of FTO NP pulverization from the CNF via a nanocarbon network and efficient charge transportation via the hybrid network, boosting ultrafast lithium storage capability.</description><subject>3D interconnected hybrid network</subject><subject>Anode effect</subject><subject>Carbon fibers</subject><subject>core/shell heterostructure</subject><subject>Diffusion rate</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Fluorine</subject><subject>Heterostructures</subject><subject>Ion diffusion</subject><subject>Lithium-ion batteries</subject><subject>Li‐ion battery</subject><subject>Materials science</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>one‐pot construction</subject><subject>Size effects</subject><subject>Spray pyrolysis</subject><subject>Tin oxides</subject><subject>ultrafast capability</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkU1PGzEQhleISgXaa8-WOCex185-HCEQgpTCAZB6W03sMTFs7DD2Ksp_64_rJlvRY08eWc8z70hvlv0QfCw4zydg7Gac85xzURXyJDsThShGkufV6ecsfn3NzmN865mylOos-30dQkzOv7KXNhFYiIktXVq7bsOeUiB4RTaDLaxc69KeBcsWDglIr52Gls0C4eRpje1h9DFRpxOa3qBV8OwBfLBuhTSRN-zeJyQdvMcjstivyBn2gGkX6J3t-swjrwcVvGHz58fj1xYoOd0iW2C_IgwpHWH8ln2x0Eb8_ve9yF7mt8-zxWj5eHc_u1qOtJwWcoSFNTDVFkApqGppwaIpQUxLXqkKEDhKDlCpaaEVF4AFlLrkxtSiFAKMvMguh71bCh8dxtS8hY58H9nkSvJa1oVSPTUeKN3fGAltsyW3Ado3gjeHhppDQ81nQ71QD8LOtbj_D91c3cx__nP_AE67mjw</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Koo, Bon‐Ryul</creator><creator>Sung, Ki‐Wook</creator><creator>Ahn, Hyo‐Jin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5786-3937</orcidid></search><sort><creationdate>20200801</creationdate><title>Boosting Ultrafast Lithium Storage Capability of Hierarchical Core/Shell Constructed Carbon Nanofiber/3D Interconnected Hybrid Network with Nanocarbon and FTO Nanoparticle Heterostructures</title><author>Koo, Bon‐Ryul ; Sung, Ki‐Wook ; Ahn, Hyo‐Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3563-e6fda5cfaa44a893fafed7a1570848aea0e30aa8456c401ae6a7c70dd91711ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D interconnected hybrid network</topic><topic>Anode effect</topic><topic>Carbon fibers</topic><topic>core/shell heterostructure</topic><topic>Diffusion rate</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Fluorine</topic><topic>Heterostructures</topic><topic>Ion diffusion</topic><topic>Lithium-ion batteries</topic><topic>Li‐ion battery</topic><topic>Materials science</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>one‐pot construction</topic><topic>Size effects</topic><topic>Spray pyrolysis</topic><topic>Tin oxides</topic><topic>ultrafast capability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koo, Bon‐Ryul</creatorcontrib><creatorcontrib>Sung, Ki‐Wook</creatorcontrib><creatorcontrib>Ahn, Hyo‐Jin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koo, Bon‐Ryul</au><au>Sung, Ki‐Wook</au><au>Ahn, Hyo‐Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Ultrafast Lithium Storage Capability of Hierarchical Core/Shell Constructed Carbon Nanofiber/3D Interconnected Hybrid Network with Nanocarbon and FTO Nanoparticle Heterostructures</atitle><jtitle>Advanced functional materials</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>30</volume><issue>32</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The aim of the study involves accelerating ultrafast electrochemical behavior of lithium‐ion batteries (LIBs) by proposing hierarchical core/shell heterostructure of carbon nanofiber (CNF)/3D interconnected hybrid network with nanocarbon and fluorine‐doped tin oxide (FTO) nanoparticles (NPs) via a one‐pot process of horizontal ultrasonic spray pyrolysis deposition. This is constructed via a pyrolysis reaction of ketjen black forming 3D interconnected FTO NPs covered with nanocarbon network on CNF. It offers fast electrical conductivity to the overall electrode with improved Li ion diffusion due to decreased size effect and relaxed structural variation of FTO NPs via nanocarbon network, leading to high discharge capacity (868.7 mAh g−1 after 100 cycles) at 100 mA g−1 and superior rate capability. Nevertheless, at extremely high current density (2000 mA g−1), significant ultrafast electrochemical performances with reversible discharge capacity (444.4 mAh g−1) and long‐term cycling retention (89.9% after 500 cycles) are noted. This is attributed to the novel effects of 3D interconnected hybrid network accelerating receptive capacity of Li ions into the FTO NPs via nanocarbon network, delivery of formed Li ions and electrons by hybrid network with FTO NP and nanocarbon, and prevention of FTO NP pulverization from CNFs via nanocarbon network. Therefore, the proposed heterostructure holds significant promise for effective development of ultrafast anode material for enhancing the practical applications of LIBs. A hierarchical core/shell heterostructure consisting of a carbon nanofiber (CNF)/3D interconnected hybrid network with nanocarbon and fluorine‐doped tin oxide (FTO) nanoparticles (NP) is developed via a one‐pot process of horizontal ultrasonic spray pyrolysis deposition. This heterostructure facilitates desirable receptive capacity of Li ions into the FTO NPs and prevention of FTO NP pulverization from the CNF via a nanocarbon network and efficient charge transportation via the hybrid network, boosting ultrafast lithium storage capability.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202001863</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5786-3937</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-08, Vol.30 (32), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2430939644
source Wiley Online Library Journals Frontfile Complete
subjects 3D interconnected hybrid network
Anode effect
Carbon fibers
core/shell heterostructure
Diffusion rate
Electrical resistivity
Electrochemical analysis
Electrode materials
Fluorine
Heterostructures
Ion diffusion
Lithium-ion batteries
Li‐ion battery
Materials science
Nanofibers
Nanoparticles
one‐pot construction
Size effects
Spray pyrolysis
Tin oxides
ultrafast capability
title Boosting Ultrafast Lithium Storage Capability of Hierarchical Core/Shell Constructed Carbon Nanofiber/3D Interconnected Hybrid Network with Nanocarbon and FTO Nanoparticle Heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A27%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Ultrafast%20Lithium%20Storage%20Capability%20of%20Hierarchical%20Core/Shell%20Constructed%20Carbon%20Nanofiber/3D%20Interconnected%20Hybrid%20Network%20with%20Nanocarbon%20and%20FTO%20Nanoparticle%20Heterostructures&rft.jtitle=Advanced%20functional%20materials&rft.au=Koo,%20Bon%E2%80%90Ryul&rft.date=2020-08-01&rft.volume=30&rft.issue=32&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202001863&rft_dat=%3Cproquest_cross%3E2430939644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430939644&rft_id=info:pmid/&rfr_iscdi=true