New Families of Circulant Graphs Without Cayley Isomorphism Property with ri=2
A circulant graph C n ( R ) is said to have the Cayley isomorphism ( CI ) property if whenever C n ( S ) is isomorphic to C n ( R ) , there is some a ∈ Z n ∗ for which S = a R . In this paper, we define Type-2 isomorphism, a new type of isomorphism of circulant graphs, different from already known A...
Gespeichert in:
Veröffentlicht in: | International journal of applied and computational mathematics 2020, Vol.6 (4) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | International journal of applied and computational mathematics |
container_volume | 6 |
creator | Kamalappan, V. Vilfred |
description | A circulant graph
C
n
(
R
)
is said to have the
Cayley isomorphism
(
CI
)
property
if whenever
C
n
(
S
)
is isomorphic to
C
n
(
R
)
, there is some
a
∈
Z
n
∗
for which
S
=
a
R
.
In this paper, we define Type-2 isomorphism, a new type of isomorphism of circulant graphs, different from already known Adam’s isomorphism, with
r
i
=
2
and present its properties. At the end of the paper, we present a VB program to show the action of the transformation acting on
C
n
(
R
)
to obtain Type-2 isomorphism. Type-2 isomorphic circulant graphs have the property that they are isomorphic circulant graphs without
CI
-
property
. |
doi_str_mv | 10.1007/s40819-020-00835-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2430688003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430688003</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1420-f2a38bd0f74ec5c5b51f464c5c07511b15b9d2efa72072bb2d44c566acd503a63</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouKz7BzwFPFcnX0178CDF_YBl9aB4DGmbulnaTU1alv33Rit4mhfm4Z3hQeiWwD0BkA-BQ0byBCgkABkTCVygGSV5ngiZp5cxMx4zAXaNFiEcAIASLoFmM7TbmRNe6s621gTsGlxYX42tPg545XW_D_jDDns3DrjQ59ac8Sa4zvl-b0OHX73rjR_O-BQZ7O0jvUFXjW6DWfzNOXpfPr8V62T7stoUT9ukJzy-2VDNsrKGRnJTiUqUgjQ85TGCFISURJR5TU2jJQVJy5LWPC7TVFe1AKZTNkd3U2_v3ddowqAObvTHeFJRziDNMgAWKTZRoff2-Gn8P0VA_bhTkzsV3alfdwrYN7VMYOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430688003</pqid></control><display><type>article</type><title>New Families of Circulant Graphs Without Cayley Isomorphism Property with ri=2</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kamalappan, V. Vilfred</creator><creatorcontrib>Kamalappan, V. Vilfred</creatorcontrib><description>A circulant graph
C
n
(
R
)
is said to have the
Cayley isomorphism
(
CI
)
property
if whenever
C
n
(
S
)
is isomorphic to
C
n
(
R
)
, there is some
a
∈
Z
n
∗
for which
S
=
a
R
.
In this paper, we define Type-2 isomorphism, a new type of isomorphism of circulant graphs, different from already known Adam’s isomorphism, with
r
i
=
2
and present its properties. At the end of the paper, we present a VB program to show the action of the transformation acting on
C
n
(
R
)
to obtain Type-2 isomorphism. Type-2 isomorphic circulant graphs have the property that they are isomorphic circulant graphs without
CI
-
property
.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-020-00835-0</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Computational mathematics ; Computational Science and Engineering ; Graphs ; Isomorphism ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2020, Vol.6 (4)</ispartof><rights>Springer Nature India Private Limited 2020</rights><rights>Springer Nature India Private Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p1420-f2a38bd0f74ec5c5b51f464c5c07511b15b9d2efa72072bb2d44c566acd503a63</cites><orcidid>0000-0002-3430-5043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40819-020-00835-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40819-020-00835-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Kamalappan, V. Vilfred</creatorcontrib><title>New Families of Circulant Graphs Without Cayley Isomorphism Property with ri=2</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>A circulant graph
C
n
(
R
)
is said to have the
Cayley isomorphism
(
CI
)
property
if whenever
C
n
(
S
)
is isomorphic to
C
n
(
R
)
, there is some
a
∈
Z
n
∗
for which
S
=
a
R
.
In this paper, we define Type-2 isomorphism, a new type of isomorphism of circulant graphs, different from already known Adam’s isomorphism, with
r
i
=
2
and present its properties. At the end of the paper, we present a VB program to show the action of the transformation acting on
C
n
(
R
)
to obtain Type-2 isomorphism. Type-2 isomorphic circulant graphs have the property that they are isomorphic circulant graphs without
CI
-
property
.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Graphs</subject><subject>Isomorphism</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkE1LxDAQhoMouKz7BzwFPFcnX0178CDF_YBl9aB4DGmbulnaTU1alv33Rit4mhfm4Z3hQeiWwD0BkA-BQ0byBCgkABkTCVygGSV5ngiZp5cxMx4zAXaNFiEcAIASLoFmM7TbmRNe6s621gTsGlxYX42tPg545XW_D_jDDns3DrjQ59ac8Sa4zvl-b0OHX73rjR_O-BQZ7O0jvUFXjW6DWfzNOXpfPr8V62T7stoUT9ukJzy-2VDNsrKGRnJTiUqUgjQ85TGCFISURJR5TU2jJQVJy5LWPC7TVFe1AKZTNkd3U2_v3ddowqAObvTHeFJRziDNMgAWKTZRoff2-Gn8P0VA_bhTkzsV3alfdwrYN7VMYOU</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kamalappan, V. Vilfred</creator><general>Springer India</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-3430-5043</orcidid></search><sort><creationdate>2020</creationdate><title>New Families of Circulant Graphs Without Cayley Isomorphism Property with ri=2</title><author>Kamalappan, V. Vilfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1420-f2a38bd0f74ec5c5b51f464c5c07511b15b9d2efa72072bb2d44c566acd503a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Graphs</topic><topic>Isomorphism</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamalappan, V. Vilfred</creatorcontrib><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamalappan, V. Vilfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Families of Circulant Graphs Without Cayley Isomorphism Property with ri=2</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2020</date><risdate>2020</risdate><volume>6</volume><issue>4</issue><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>A circulant graph
C
n
(
R
)
is said to have the
Cayley isomorphism
(
CI
)
property
if whenever
C
n
(
S
)
is isomorphic to
C
n
(
R
)
, there is some
a
∈
Z
n
∗
for which
S
=
a
R
.
In this paper, we define Type-2 isomorphism, a new type of isomorphism of circulant graphs, different from already known Adam’s isomorphism, with
r
i
=
2
and present its properties. At the end of the paper, we present a VB program to show the action of the transformation acting on
C
n
(
R
)
to obtain Type-2 isomorphism. Type-2 isomorphic circulant graphs have the property that they are isomorphic circulant graphs without
CI
-
property
.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-020-00835-0</doi><orcidid>https://orcid.org/0000-0002-3430-5043</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2349-5103 |
ispartof | International journal of applied and computational mathematics, 2020, Vol.6 (4) |
issn | 2349-5103 2199-5796 |
language | eng |
recordid | cdi_proquest_journals_2430688003 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Applied mathematics Computational mathematics Computational Science and Engineering Graphs Isomorphism Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nuclear Energy Operations Research/Decision Theory Original Paper Theoretical |
title | New Families of Circulant Graphs Without Cayley Isomorphism Property with ri=2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Families%20of%20Circulant%20Graphs%20Without%20Cayley%20Isomorphism%20Property%20with%20ri=2&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Kamalappan,%20V.%20Vilfred&rft.date=2020&rft.volume=6&rft.issue=4&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-020-00835-0&rft_dat=%3Cproquest_sprin%3E2430688003%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430688003&rft_id=info:pmid/&rfr_iscdi=true |