New Families of Circulant Graphs Without Cayley Isomorphism Property with ri=2

A circulant graph C n ( R ) is said to have the Cayley isomorphism ( CI ) property if whenever C n ( S ) is isomorphic to C n ( R ) , there is some a ∈ Z n ∗ for which S = a R . In this paper, we define Type-2 isomorphism, a new type of isomorphism of circulant graphs, different from already known A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied and computational mathematics 2020, Vol.6 (4)
1. Verfasser: Kamalappan, V. Vilfred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title International journal of applied and computational mathematics
container_volume 6
creator Kamalappan, V. Vilfred
description A circulant graph C n ( R ) is said to have the Cayley isomorphism ( CI ) property if whenever C n ( S ) is isomorphic to C n ( R ) , there is some a ∈ Z n ∗ for which S = a R . In this paper, we define Type-2 isomorphism, a new type of isomorphism of circulant graphs, different from already known Adam’s isomorphism, with r i = 2 and present its properties. At the end of the paper, we present a VB program to show the action of the transformation acting on C n ( R ) to obtain Type-2 isomorphism. Type-2 isomorphic circulant graphs have the property that they are isomorphic circulant graphs without CI - property .
doi_str_mv 10.1007/s40819-020-00835-0
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2430688003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430688003</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1420-f2a38bd0f74ec5c5b51f464c5c07511b15b9d2efa72072bb2d44c566acd503a63</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouKz7BzwFPFcnX0178CDF_YBl9aB4DGmbulnaTU1alv33Rit4mhfm4Z3hQeiWwD0BkA-BQ0byBCgkABkTCVygGSV5ngiZp5cxMx4zAXaNFiEcAIASLoFmM7TbmRNe6s621gTsGlxYX42tPg545XW_D_jDDns3DrjQ59ac8Sa4zvl-b0OHX73rjR_O-BQZ7O0jvUFXjW6DWfzNOXpfPr8V62T7stoUT9ukJzy-2VDNsrKGRnJTiUqUgjQ85TGCFISURJR5TU2jJQVJy5LWPC7TVFe1AKZTNkd3U2_v3ddowqAObvTHeFJRziDNMgAWKTZRoff2-Gn8P0VA_bhTkzsV3alfdwrYN7VMYOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430688003</pqid></control><display><type>article</type><title>New Families of Circulant Graphs Without Cayley Isomorphism Property with ri=2</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kamalappan, V. Vilfred</creator><creatorcontrib>Kamalappan, V. Vilfred</creatorcontrib><description>A circulant graph C n ( R ) is said to have the Cayley isomorphism ( CI ) property if whenever C n ( S ) is isomorphic to C n ( R ) , there is some a ∈ Z n ∗ for which S = a R . In this paper, we define Type-2 isomorphism, a new type of isomorphism of circulant graphs, different from already known Adam’s isomorphism, with r i = 2 and present its properties. At the end of the paper, we present a VB program to show the action of the transformation acting on C n ( R ) to obtain Type-2 isomorphism. Type-2 isomorphic circulant graphs have the property that they are isomorphic circulant graphs without CI - property .</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-020-00835-0</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Computational mathematics ; Computational Science and Engineering ; Graphs ; Isomorphism ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2020, Vol.6 (4)</ispartof><rights>Springer Nature India Private Limited 2020</rights><rights>Springer Nature India Private Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p1420-f2a38bd0f74ec5c5b51f464c5c07511b15b9d2efa72072bb2d44c566acd503a63</cites><orcidid>0000-0002-3430-5043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40819-020-00835-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40819-020-00835-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Kamalappan, V. Vilfred</creatorcontrib><title>New Families of Circulant Graphs Without Cayley Isomorphism Property with ri=2</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>A circulant graph C n ( R ) is said to have the Cayley isomorphism ( CI ) property if whenever C n ( S ) is isomorphic to C n ( R ) , there is some a ∈ Z n ∗ for which S = a R . In this paper, we define Type-2 isomorphism, a new type of isomorphism of circulant graphs, different from already known Adam’s isomorphism, with r i = 2 and present its properties. At the end of the paper, we present a VB program to show the action of the transformation acting on C n ( R ) to obtain Type-2 isomorphism. Type-2 isomorphic circulant graphs have the property that they are isomorphic circulant graphs without CI - property .</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Graphs</subject><subject>Isomorphism</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkE1LxDAQhoMouKz7BzwFPFcnX0178CDF_YBl9aB4DGmbulnaTU1alv33Rit4mhfm4Z3hQeiWwD0BkA-BQ0byBCgkABkTCVygGSV5ngiZp5cxMx4zAXaNFiEcAIASLoFmM7TbmRNe6s621gTsGlxYX42tPg545XW_D_jDDns3DrjQ59ac8Sa4zvl-b0OHX73rjR_O-BQZ7O0jvUFXjW6DWfzNOXpfPr8V62T7stoUT9ukJzy-2VDNsrKGRnJTiUqUgjQ85TGCFISURJR5TU2jJQVJy5LWPC7TVFe1AKZTNkd3U2_v3ddowqAObvTHeFJRziDNMgAWKTZRoff2-Gn8P0VA_bhTkzsV3alfdwrYN7VMYOU</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kamalappan, V. Vilfred</creator><general>Springer India</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-3430-5043</orcidid></search><sort><creationdate>2020</creationdate><title>New Families of Circulant Graphs Without Cayley Isomorphism Property with ri=2</title><author>Kamalappan, V. Vilfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1420-f2a38bd0f74ec5c5b51f464c5c07511b15b9d2efa72072bb2d44c566acd503a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Graphs</topic><topic>Isomorphism</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamalappan, V. Vilfred</creatorcontrib><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamalappan, V. Vilfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Families of Circulant Graphs Without Cayley Isomorphism Property with ri=2</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2020</date><risdate>2020</risdate><volume>6</volume><issue>4</issue><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>A circulant graph C n ( R ) is said to have the Cayley isomorphism ( CI ) property if whenever C n ( S ) is isomorphic to C n ( R ) , there is some a ∈ Z n ∗ for which S = a R . In this paper, we define Type-2 isomorphism, a new type of isomorphism of circulant graphs, different from already known Adam’s isomorphism, with r i = 2 and present its properties. At the end of the paper, we present a VB program to show the action of the transformation acting on C n ( R ) to obtain Type-2 isomorphism. Type-2 isomorphic circulant graphs have the property that they are isomorphic circulant graphs without CI - property .</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-020-00835-0</doi><orcidid>https://orcid.org/0000-0002-3430-5043</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2349-5103
ispartof International journal of applied and computational mathematics, 2020, Vol.6 (4)
issn 2349-5103
2199-5796
language eng
recordid cdi_proquest_journals_2430688003
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Applied mathematics
Computational mathematics
Computational Science and Engineering
Graphs
Isomorphism
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Nuclear Energy
Operations Research/Decision Theory
Original Paper
Theoretical
title New Families of Circulant Graphs Without Cayley Isomorphism Property with ri=2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Families%20of%20Circulant%20Graphs%20Without%20Cayley%20Isomorphism%20Property%20with%20ri=2&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Kamalappan,%20V.%20Vilfred&rft.date=2020&rft.volume=6&rft.issue=4&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-020-00835-0&rft_dat=%3Cproquest_sprin%3E2430688003%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430688003&rft_id=info:pmid/&rfr_iscdi=true