Lower bound for the Perron–Frobenius degrees of Perron numbers
Using an idea of Doug Lind, we give a lower bound for the Perron–Frobenius degree of a Perron number that is not totally real, in terms of the layout of its Galois conjugates in the complex plane. As an application, we prove that there are cubic Perron numbers whose Perron–Frobenius degrees are arbi...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2021-04, Vol.41 (4), p.1264-1280 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1280 |
---|---|
container_issue | 4 |
container_start_page | 1264 |
container_title | Ergodic theory and dynamical systems |
container_volume | 41 |
creator | YAZDI, MEHDI |
description | Using an idea of Doug Lind, we give a lower bound for the Perron–Frobenius degree of a Perron number that is not totally real, in terms of the layout of its Galois conjugates in the complex plane. As an application, we prove that there are cubic Perron numbers whose Perron–Frobenius degrees are arbitrary large, a result known to Lind, McMullen and Thurston. A similar result is proved for bi-Perron numbers. |
doi_str_mv | 10.1017/etds.2019.113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2430607077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2019_113</cupid><sourcerecordid>2430607077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-90fa4a9b16557f213c5143296f25671dcf2331755b5f668ee65b2f298605e1fb3</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRsFaP3gOe0-7sZ3NTilWhoAc9L9lktrbYbJ1NEG_-B_-hv8SEFrx4msM8887Lw9gl8AlwsFNs6zQRHIoJgDxiI1CmyJUCe8xGHJTM5UzbU3aW0oZzLsHqEbtexg-kzMeuqbMQKWtfMXtCotj8fH0vKHps1l3KalwRYspiOGyzptt6pHTOTkL5lvDiMMfsZXH7PL_Pl493D_ObZV5Jpdq84KFUZeHBaG2DAFnpvpEoTBDaWKirIOTQSHsdjJkhGu1FEMXMcI0QvByzq33ujuJ7h6l1m9hR0790QkluuOXW9lS-pyqKKREGt6P1tqRPB9wNktwgyQ2SXC-p56cHvtx6Wtcr_Iv9_-IX9QFpkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430607077</pqid></control><display><type>article</type><title>Lower bound for the Perron–Frobenius degrees of Perron numbers</title><source>Cambridge University Press Journals Complete</source><creator>YAZDI, MEHDI</creator><creatorcontrib>YAZDI, MEHDI</creatorcontrib><description>Using an idea of Doug Lind, we give a lower bound for the Perron–Frobenius degree of a Perron number that is not totally real, in terms of the layout of its Galois conjugates in the complex plane. As an application, we prove that there are cubic Perron numbers whose Perron–Frobenius degrees are arbitrary large, a result known to Lind, McMullen and Thurston. A similar result is proved for bi-Perron numbers.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2019.113</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Lower bounds ; Original Article</subject><ispartof>Ergodic theory and dynamical systems, 2021-04, Vol.41 (4), p.1264-1280</ispartof><rights>The Author(s) 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-90fa4a9b16557f213c5143296f25671dcf2331755b5f668ee65b2f298605e1fb3</citedby><cites>FETCH-LOGICAL-c344t-90fa4a9b16557f213c5143296f25671dcf2331755b5f668ee65b2f298605e1fb3</cites><orcidid>0000-0002-2831-6651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385719001135/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>YAZDI, MEHDI</creatorcontrib><title>Lower bound for the Perron–Frobenius degrees of Perron numbers</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>Using an idea of Doug Lind, we give a lower bound for the Perron–Frobenius degree of a Perron number that is not totally real, in terms of the layout of its Galois conjugates in the complex plane. As an application, we prove that there are cubic Perron numbers whose Perron–Frobenius degrees are arbitrary large, a result known to Lind, McMullen and Thurston. A similar result is proved for bi-Perron numbers.</description><subject>Lower bounds</subject><subject>Original Article</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkE1Lw0AQhhdRsFaP3gOe0-7sZ3NTilWhoAc9L9lktrbYbJ1NEG_-B_-hv8SEFrx4msM8887Lw9gl8AlwsFNs6zQRHIoJgDxiI1CmyJUCe8xGHJTM5UzbU3aW0oZzLsHqEbtexg-kzMeuqbMQKWtfMXtCotj8fH0vKHps1l3KalwRYspiOGyzptt6pHTOTkL5lvDiMMfsZXH7PL_Pl493D_ObZV5Jpdq84KFUZeHBaG2DAFnpvpEoTBDaWKirIOTQSHsdjJkhGu1FEMXMcI0QvByzq33ujuJ7h6l1m9hR0790QkluuOXW9lS-pyqKKREGt6P1tqRPB9wNktwgyQ2SXC-p56cHvtx6Wtcr_Iv9_-IX9QFpkA</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>YAZDI, MEHDI</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2831-6651</orcidid></search><sort><creationdate>202104</creationdate><title>Lower bound for the Perron–Frobenius degrees of Perron numbers</title><author>YAZDI, MEHDI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-90fa4a9b16557f213c5143296f25671dcf2331755b5f668ee65b2f298605e1fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Lower bounds</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YAZDI, MEHDI</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YAZDI, MEHDI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower bound for the Perron–Frobenius degrees of Perron numbers</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2021-04</date><risdate>2021</risdate><volume>41</volume><issue>4</issue><spage>1264</spage><epage>1280</epage><pages>1264-1280</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>Using an idea of Doug Lind, we give a lower bound for the Perron–Frobenius degree of a Perron number that is not totally real, in terms of the layout of its Galois conjugates in the complex plane. As an application, we prove that there are cubic Perron numbers whose Perron–Frobenius degrees are arbitrary large, a result known to Lind, McMullen and Thurston. A similar result is proved for bi-Perron numbers.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2019.113</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2831-6651</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2021-04, Vol.41 (4), p.1264-1280 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_proquest_journals_2430607077 |
source | Cambridge University Press Journals Complete |
subjects | Lower bounds Original Article |
title | Lower bound for the Perron–Frobenius degrees of Perron numbers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20bound%20for%20the%20Perron%E2%80%93Frobenius%20degrees%20of%20Perron%20numbers&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=YAZDI,%20MEHDI&rft.date=2021-04&rft.volume=41&rft.issue=4&rft.spage=1264&rft.epage=1280&rft.pages=1264-1280&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2019.113&rft_dat=%3Cproquest_cross%3E2430607077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430607077&rft_id=info:pmid/&rft_cupid=10_1017_etds_2019_113&rfr_iscdi=true |