Lower bound for the Perron–Frobenius degrees of Perron numbers

Using an idea of Doug Lind, we give a lower bound for the Perron–Frobenius degree of a Perron number that is not totally real, in terms of the layout of its Galois conjugates in the complex plane. As an application, we prove that there are cubic Perron numbers whose Perron–Frobenius degrees are arbi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2021-04, Vol.41 (4), p.1264-1280
1. Verfasser: YAZDI, MEHDI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1280
container_issue 4
container_start_page 1264
container_title Ergodic theory and dynamical systems
container_volume 41
creator YAZDI, MEHDI
description Using an idea of Doug Lind, we give a lower bound for the Perron–Frobenius degree of a Perron number that is not totally real, in terms of the layout of its Galois conjugates in the complex plane. As an application, we prove that there are cubic Perron numbers whose Perron–Frobenius degrees are arbitrary large, a result known to Lind, McMullen and Thurston. A similar result is proved for bi-Perron numbers.
doi_str_mv 10.1017/etds.2019.113
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2430607077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2019_113</cupid><sourcerecordid>2430607077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-90fa4a9b16557f213c5143296f25671dcf2331755b5f668ee65b2f298605e1fb3</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRsFaP3gOe0-7sZ3NTilWhoAc9L9lktrbYbJ1NEG_-B_-hv8SEFrx4msM8887Lw9gl8AlwsFNs6zQRHIoJgDxiI1CmyJUCe8xGHJTM5UzbU3aW0oZzLsHqEbtexg-kzMeuqbMQKWtfMXtCotj8fH0vKHps1l3KalwRYspiOGyzptt6pHTOTkL5lvDiMMfsZXH7PL_Pl493D_ObZV5Jpdq84KFUZeHBaG2DAFnpvpEoTBDaWKirIOTQSHsdjJkhGu1FEMXMcI0QvByzq33ujuJ7h6l1m9hR0790QkluuOXW9lS-pyqKKREGt6P1tqRPB9wNktwgyQ2SXC-p56cHvtx6Wtcr_Iv9_-IX9QFpkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430607077</pqid></control><display><type>article</type><title>Lower bound for the Perron–Frobenius degrees of Perron numbers</title><source>Cambridge University Press Journals Complete</source><creator>YAZDI, MEHDI</creator><creatorcontrib>YAZDI, MEHDI</creatorcontrib><description>Using an idea of Doug Lind, we give a lower bound for the Perron–Frobenius degree of a Perron number that is not totally real, in terms of the layout of its Galois conjugates in the complex plane. As an application, we prove that there are cubic Perron numbers whose Perron–Frobenius degrees are arbitrary large, a result known to Lind, McMullen and Thurston. A similar result is proved for bi-Perron numbers.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2019.113</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Lower bounds ; Original Article</subject><ispartof>Ergodic theory and dynamical systems, 2021-04, Vol.41 (4), p.1264-1280</ispartof><rights>The Author(s) 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-90fa4a9b16557f213c5143296f25671dcf2331755b5f668ee65b2f298605e1fb3</citedby><cites>FETCH-LOGICAL-c344t-90fa4a9b16557f213c5143296f25671dcf2331755b5f668ee65b2f298605e1fb3</cites><orcidid>0000-0002-2831-6651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385719001135/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>YAZDI, MEHDI</creatorcontrib><title>Lower bound for the Perron–Frobenius degrees of Perron numbers</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>Using an idea of Doug Lind, we give a lower bound for the Perron–Frobenius degree of a Perron number that is not totally real, in terms of the layout of its Galois conjugates in the complex plane. As an application, we prove that there are cubic Perron numbers whose Perron–Frobenius degrees are arbitrary large, a result known to Lind, McMullen and Thurston. A similar result is proved for bi-Perron numbers.</description><subject>Lower bounds</subject><subject>Original Article</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkE1Lw0AQhhdRsFaP3gOe0-7sZ3NTilWhoAc9L9lktrbYbJ1NEG_-B_-hv8SEFrx4msM8887Lw9gl8AlwsFNs6zQRHIoJgDxiI1CmyJUCe8xGHJTM5UzbU3aW0oZzLsHqEbtexg-kzMeuqbMQKWtfMXtCotj8fH0vKHps1l3KalwRYspiOGyzptt6pHTOTkL5lvDiMMfsZXH7PL_Pl493D_ObZV5Jpdq84KFUZeHBaG2DAFnpvpEoTBDaWKirIOTQSHsdjJkhGu1FEMXMcI0QvByzq33ujuJ7h6l1m9hR0790QkluuOXW9lS-pyqKKREGt6P1tqRPB9wNktwgyQ2SXC-p56cHvtx6Wtcr_Iv9_-IX9QFpkA</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>YAZDI, MEHDI</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2831-6651</orcidid></search><sort><creationdate>202104</creationdate><title>Lower bound for the Perron–Frobenius degrees of Perron numbers</title><author>YAZDI, MEHDI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-90fa4a9b16557f213c5143296f25671dcf2331755b5f668ee65b2f298605e1fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Lower bounds</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YAZDI, MEHDI</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YAZDI, MEHDI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower bound for the Perron–Frobenius degrees of Perron numbers</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2021-04</date><risdate>2021</risdate><volume>41</volume><issue>4</issue><spage>1264</spage><epage>1280</epage><pages>1264-1280</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>Using an idea of Doug Lind, we give a lower bound for the Perron–Frobenius degree of a Perron number that is not totally real, in terms of the layout of its Galois conjugates in the complex plane. As an application, we prove that there are cubic Perron numbers whose Perron–Frobenius degrees are arbitrary large, a result known to Lind, McMullen and Thurston. A similar result is proved for bi-Perron numbers.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2019.113</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2831-6651</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2021-04, Vol.41 (4), p.1264-1280
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_journals_2430607077
source Cambridge University Press Journals Complete
subjects Lower bounds
Original Article
title Lower bound for the Perron–Frobenius degrees of Perron numbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20bound%20for%20the%20Perron%E2%80%93Frobenius%20degrees%20of%20Perron%20numbers&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=YAZDI,%20MEHDI&rft.date=2021-04&rft.volume=41&rft.issue=4&rft.spage=1264&rft.epage=1280&rft.pages=1264-1280&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2019.113&rft_dat=%3Cproquest_cross%3E2430607077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430607077&rft_id=info:pmid/&rft_cupid=10_1017_etds_2019_113&rfr_iscdi=true