On slow escaping and non-escaping points of quasimeromorphic mappings

We show that for any quasimeromorphic mapping with an essential singularity at infinity, there exist points whose iterates tend to infinity arbitrarily slowly. This extends a result by Nicks for quasiregular mappings, and Rippon and Stallard for transcendental meromorphic functions on the complex pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2021-04, Vol.41 (4), p.1190-1216
1. Verfasser: WARREN, LUKE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1216
container_issue 4
container_start_page 1190
container_title Ergodic theory and dynamical systems
container_volume 41
creator WARREN, LUKE
description We show that for any quasimeromorphic mapping with an essential singularity at infinity, there exist points whose iterates tend to infinity arbitrarily slowly. This extends a result by Nicks for quasiregular mappings, and Rippon and Stallard for transcendental meromorphic functions on the complex plane. We further establish a new result for the growth rate of quasiregular mappings near an essential singularity, and briefly extend some results regarding the bounded orbit set and the bungee set to the quasimeromorphic setting.
doi_str_mv 10.1017/etds.2019.110
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2430606988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2019_110</cupid><sourcerecordid>2430606988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-e5dbe3fdf8d74da8633eb060269649ee778fe42f099d20ac8887c5cbefb5dff13</originalsourceid><addsrcrecordid>eNptkMtKAzEUQIMoWKtL9wHXaZNJJo-llPqAQje6Dpk86pROMk2miH_vDBbduLpwOfdcOADcE7wgmIilH1xZVJioBSH4AswI4woxRsQlmGHCKKKyFtfgppQ9xpgSUc_AehthOaRP6Is1fRt30EQHY4rod9GnNg4FpgCPJ1PazufUpdx_tBZ2pp-QcguugjkUf3eec_D-tH5bvaDN9vl19bhBtuJkQL52jafBBekEc0ZySn2DOa644kx5L4QMnlUBK-UqbKyUUtjaNj40tQuB0Dl4-PH2OR1Pvgx6n045ji91xeho4krKkUI_lM2plOyD7nPbmfylCdZTKT2V0lMpPZYa-eWZN12TW7fzf9r_L74BQP1s_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430606988</pqid></control><display><type>article</type><title>On slow escaping and non-escaping points of quasimeromorphic mappings</title><source>Cambridge University Press Journals Complete</source><creator>WARREN, LUKE</creator><creatorcontrib>WARREN, LUKE</creatorcontrib><description>We show that for any quasimeromorphic mapping with an essential singularity at infinity, there exist points whose iterates tend to infinity arbitrarily slowly. This extends a result by Nicks for quasiregular mappings, and Rippon and Stallard for transcendental meromorphic functions on the complex plane. We further establish a new result for the growth rate of quasiregular mappings near an essential singularity, and briefly extend some results regarding the bounded orbit set and the bungee set to the quasimeromorphic setting.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2019.110</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Infinity ; Mapping ; Meromorphic functions ; Original Article ; Singularity (mathematics)</subject><ispartof>Ergodic theory and dynamical systems, 2021-04, Vol.41 (4), p.1190-1216</ispartof><rights>Cambridge University Press, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-e5dbe3fdf8d74da8633eb060269649ee778fe42f099d20ac8887c5cbefb5dff13</cites><orcidid>0000-0002-2925-3533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S014338571900110X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>WARREN, LUKE</creatorcontrib><title>On slow escaping and non-escaping points of quasimeromorphic mappings</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>We show that for any quasimeromorphic mapping with an essential singularity at infinity, there exist points whose iterates tend to infinity arbitrarily slowly. This extends a result by Nicks for quasiregular mappings, and Rippon and Stallard for transcendental meromorphic functions on the complex plane. We further establish a new result for the growth rate of quasiregular mappings near an essential singularity, and briefly extend some results regarding the bounded orbit set and the bungee set to the quasimeromorphic setting.</description><subject>Infinity</subject><subject>Mapping</subject><subject>Meromorphic functions</subject><subject>Original Article</subject><subject>Singularity (mathematics)</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkMtKAzEUQIMoWKtL9wHXaZNJJo-llPqAQje6Dpk86pROMk2miH_vDBbduLpwOfdcOADcE7wgmIilH1xZVJioBSH4AswI4woxRsQlmGHCKKKyFtfgppQ9xpgSUc_AehthOaRP6Is1fRt30EQHY4rod9GnNg4FpgCPJ1PazufUpdx_tBZ2pp-QcguugjkUf3eec_D-tH5bvaDN9vl19bhBtuJkQL52jafBBekEc0ZySn2DOa644kx5L4QMnlUBK-UqbKyUUtjaNj40tQuB0Dl4-PH2OR1Pvgx6n045ji91xeho4krKkUI_lM2plOyD7nPbmfylCdZTKT2V0lMpPZYa-eWZN12TW7fzf9r_L74BQP1s_w</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>WARREN, LUKE</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2925-3533</orcidid></search><sort><creationdate>202104</creationdate><title>On slow escaping and non-escaping points of quasimeromorphic mappings</title><author>WARREN, LUKE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-e5dbe3fdf8d74da8633eb060269649ee778fe42f099d20ac8887c5cbefb5dff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Infinity</topic><topic>Mapping</topic><topic>Meromorphic functions</topic><topic>Original Article</topic><topic>Singularity (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WARREN, LUKE</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WARREN, LUKE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On slow escaping and non-escaping points of quasimeromorphic mappings</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2021-04</date><risdate>2021</risdate><volume>41</volume><issue>4</issue><spage>1190</spage><epage>1216</epage><pages>1190-1216</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>We show that for any quasimeromorphic mapping with an essential singularity at infinity, there exist points whose iterates tend to infinity arbitrarily slowly. This extends a result by Nicks for quasiregular mappings, and Rippon and Stallard for transcendental meromorphic functions on the complex plane. We further establish a new result for the growth rate of quasiregular mappings near an essential singularity, and briefly extend some results regarding the bounded orbit set and the bungee set to the quasimeromorphic setting.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2019.110</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-2925-3533</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2021-04, Vol.41 (4), p.1190-1216
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_journals_2430606988
source Cambridge University Press Journals Complete
subjects Infinity
Mapping
Meromorphic functions
Original Article
Singularity (mathematics)
title On slow escaping and non-escaping points of quasimeromorphic mappings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20slow%20escaping%20and%20non-escaping%20points%20of%20quasimeromorphic%20mappings&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=WARREN,%20LUKE&rft.date=2021-04&rft.volume=41&rft.issue=4&rft.spage=1190&rft.epage=1216&rft.pages=1190-1216&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2019.110&rft_dat=%3Cproquest_cross%3E2430606988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430606988&rft_id=info:pmid/&rft_cupid=10_1017_etds_2019_110&rfr_iscdi=true