On slow escaping and non-escaping points of quasimeromorphic mappings
We show that for any quasimeromorphic mapping with an essential singularity at infinity, there exist points whose iterates tend to infinity arbitrarily slowly. This extends a result by Nicks for quasiregular mappings, and Rippon and Stallard for transcendental meromorphic functions on the complex pl...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2021-04, Vol.41 (4), p.1190-1216 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1216 |
---|---|
container_issue | 4 |
container_start_page | 1190 |
container_title | Ergodic theory and dynamical systems |
container_volume | 41 |
creator | WARREN, LUKE |
description | We show that for any quasimeromorphic mapping with an essential singularity at infinity, there exist points whose iterates tend to infinity arbitrarily slowly. This extends a result by Nicks for quasiregular mappings, and Rippon and Stallard for transcendental meromorphic functions on the complex plane. We further establish a new result for the growth rate of quasiregular mappings near an essential singularity, and briefly extend some results regarding the bounded orbit set and the bungee set to the quasimeromorphic setting. |
doi_str_mv | 10.1017/etds.2019.110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2430606988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2019_110</cupid><sourcerecordid>2430606988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-e5dbe3fdf8d74da8633eb060269649ee778fe42f099d20ac8887c5cbefb5dff13</originalsourceid><addsrcrecordid>eNptkMtKAzEUQIMoWKtL9wHXaZNJJo-llPqAQje6Dpk86pROMk2miH_vDBbduLpwOfdcOADcE7wgmIilH1xZVJioBSH4AswI4woxRsQlmGHCKKKyFtfgppQ9xpgSUc_AehthOaRP6Is1fRt30EQHY4rod9GnNg4FpgCPJ1PazufUpdx_tBZ2pp-QcguugjkUf3eec_D-tH5bvaDN9vl19bhBtuJkQL52jafBBekEc0ZySn2DOa644kx5L4QMnlUBK-UqbKyUUtjaNj40tQuB0Dl4-PH2OR1Pvgx6n045ji91xeho4krKkUI_lM2plOyD7nPbmfylCdZTKT2V0lMpPZYa-eWZN12TW7fzf9r_L74BQP1s_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430606988</pqid></control><display><type>article</type><title>On slow escaping and non-escaping points of quasimeromorphic mappings</title><source>Cambridge University Press Journals Complete</source><creator>WARREN, LUKE</creator><creatorcontrib>WARREN, LUKE</creatorcontrib><description>We show that for any quasimeromorphic mapping with an essential singularity at infinity, there exist points whose iterates tend to infinity arbitrarily slowly. This extends a result by Nicks for quasiregular mappings, and Rippon and Stallard for transcendental meromorphic functions on the complex plane. We further establish a new result for the growth rate of quasiregular mappings near an essential singularity, and briefly extend some results regarding the bounded orbit set and the bungee set to the quasimeromorphic setting.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2019.110</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Infinity ; Mapping ; Meromorphic functions ; Original Article ; Singularity (mathematics)</subject><ispartof>Ergodic theory and dynamical systems, 2021-04, Vol.41 (4), p.1190-1216</ispartof><rights>Cambridge University Press, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-e5dbe3fdf8d74da8633eb060269649ee778fe42f099d20ac8887c5cbefb5dff13</cites><orcidid>0000-0002-2925-3533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S014338571900110X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>WARREN, LUKE</creatorcontrib><title>On slow escaping and non-escaping points of quasimeromorphic mappings</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>We show that for any quasimeromorphic mapping with an essential singularity at infinity, there exist points whose iterates tend to infinity arbitrarily slowly. This extends a result by Nicks for quasiregular mappings, and Rippon and Stallard for transcendental meromorphic functions on the complex plane. We further establish a new result for the growth rate of quasiregular mappings near an essential singularity, and briefly extend some results regarding the bounded orbit set and the bungee set to the quasimeromorphic setting.</description><subject>Infinity</subject><subject>Mapping</subject><subject>Meromorphic functions</subject><subject>Original Article</subject><subject>Singularity (mathematics)</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkMtKAzEUQIMoWKtL9wHXaZNJJo-llPqAQje6Dpk86pROMk2miH_vDBbduLpwOfdcOADcE7wgmIilH1xZVJioBSH4AswI4woxRsQlmGHCKKKyFtfgppQ9xpgSUc_AehthOaRP6Is1fRt30EQHY4rod9GnNg4FpgCPJ1PazufUpdx_tBZ2pp-QcguugjkUf3eec_D-tH5bvaDN9vl19bhBtuJkQL52jafBBekEc0ZySn2DOa644kx5L4QMnlUBK-UqbKyUUtjaNj40tQuB0Dl4-PH2OR1Pvgx6n045ji91xeho4krKkUI_lM2plOyD7nPbmfylCdZTKT2V0lMpPZYa-eWZN12TW7fzf9r_L74BQP1s_w</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>WARREN, LUKE</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2925-3533</orcidid></search><sort><creationdate>202104</creationdate><title>On slow escaping and non-escaping points of quasimeromorphic mappings</title><author>WARREN, LUKE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-e5dbe3fdf8d74da8633eb060269649ee778fe42f099d20ac8887c5cbefb5dff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Infinity</topic><topic>Mapping</topic><topic>Meromorphic functions</topic><topic>Original Article</topic><topic>Singularity (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WARREN, LUKE</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WARREN, LUKE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On slow escaping and non-escaping points of quasimeromorphic mappings</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2021-04</date><risdate>2021</risdate><volume>41</volume><issue>4</issue><spage>1190</spage><epage>1216</epage><pages>1190-1216</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>We show that for any quasimeromorphic mapping with an essential singularity at infinity, there exist points whose iterates tend to infinity arbitrarily slowly. This extends a result by Nicks for quasiregular mappings, and Rippon and Stallard for transcendental meromorphic functions on the complex plane. We further establish a new result for the growth rate of quasiregular mappings near an essential singularity, and briefly extend some results regarding the bounded orbit set and the bungee set to the quasimeromorphic setting.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2019.110</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-2925-3533</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2021-04, Vol.41 (4), p.1190-1216 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_proquest_journals_2430606988 |
source | Cambridge University Press Journals Complete |
subjects | Infinity Mapping Meromorphic functions Original Article Singularity (mathematics) |
title | On slow escaping and non-escaping points of quasimeromorphic mappings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20slow%20escaping%20and%20non-escaping%20points%20of%20quasimeromorphic%20mappings&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=WARREN,%20LUKE&rft.date=2021-04&rft.volume=41&rft.issue=4&rft.spage=1190&rft.epage=1216&rft.pages=1190-1216&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2019.110&rft_dat=%3Cproquest_cross%3E2430606988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430606988&rft_id=info:pmid/&rft_cupid=10_1017_etds_2019_110&rfr_iscdi=true |