Ubicomp Digital 2020 -- Handwriting classification using a convolutional recurrent network
The Ubicomp Digital 2020 -- Time Series Classification Challenge from STABILO is a challenge about multi-variate time series classification. The data collected from 100 volunteer writers, and contains 15 features measured with multiple sensors on a pen. In this paper,we use a neural network to class...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wei-Cheng, Lai Schröter, Hendrik |
description | The Ubicomp Digital 2020 -- Time Series Classification Challenge from STABILO is a challenge about multi-variate time series classification. The data collected from 100 volunteer writers, and contains 15 features measured with multiple sensors on a pen. In this paper,we use a neural network to classify the data into 52 classes, that is lower and upper cases of Arabic letters. The proposed architecture of the neural network a is CNN-LSTM network. It combines convolutional neural network (CNN) for short term context with along short term memory layer (LSTM) for also long term dependencies. We reached an accuracy of 68% on our writer exclusive test set and64.6% on the blind challenge test set resulting in the second place. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2430536905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430536905</sourcerecordid><originalsourceid>FETCH-proquest_journals_24305369053</originalsourceid><addsrcrecordid>eNqNi0sKwjAURYMgWLR7eOC4EJO26tgPXYBOnJQY0_JqTGo-dvu24AKc3AuHc2YkYZxvsl3O2IKk3neUUlZuWVHwhNyud5T21cMRWwxCA6OMQpZBJcxjcBjQtCC18B4blCKgNRD9BAVIaz5Wx4mNoVMyOqdMAKPCYN1zReaN0F6lv1-S9fl0OVRZ7-w7Kh_qzkY3pr5mOacFL_fj_Gd9AcK0Qlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430536905</pqid></control><display><type>article</type><title>Ubicomp Digital 2020 -- Handwriting classification using a convolutional recurrent network</title><source>Free E- Journals</source><creator>Wei-Cheng, Lai ; Schröter, Hendrik</creator><creatorcontrib>Wei-Cheng, Lai ; Schröter, Hendrik</creatorcontrib><description>The Ubicomp Digital 2020 -- Time Series Classification Challenge from STABILO is a challenge about multi-variate time series classification. The data collected from 100 volunteer writers, and contains 15 features measured with multiple sensors on a pen. In this paper,we use a neural network to classify the data into 52 classes, that is lower and upper cases of Arabic letters. The proposed architecture of the neural network a is CNN-LSTM network. It combines convolutional neural network (CNN) for short term context with along short term memory layer (LSTM) for also long term dependencies. We reached an accuracy of 68% on our writer exclusive test set and64.6% on the blind challenge test set resulting in the second place.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Classification ; Handwriting ; Neural networks ; Short term ; Time series ; Ubiquitous computing</subject><ispartof>arXiv.org, 2020-08</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wei-Cheng, Lai</creatorcontrib><creatorcontrib>Schröter, Hendrik</creatorcontrib><title>Ubicomp Digital 2020 -- Handwriting classification using a convolutional recurrent network</title><title>arXiv.org</title><description>The Ubicomp Digital 2020 -- Time Series Classification Challenge from STABILO is a challenge about multi-variate time series classification. The data collected from 100 volunteer writers, and contains 15 features measured with multiple sensors on a pen. In this paper,we use a neural network to classify the data into 52 classes, that is lower and upper cases of Arabic letters. The proposed architecture of the neural network a is CNN-LSTM network. It combines convolutional neural network (CNN) for short term context with along short term memory layer (LSTM) for also long term dependencies. We reached an accuracy of 68% on our writer exclusive test set and64.6% on the blind challenge test set resulting in the second place.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Handwriting</subject><subject>Neural networks</subject><subject>Short term</subject><subject>Time series</subject><subject>Ubiquitous computing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0sKwjAURYMgWLR7eOC4EJO26tgPXYBOnJQY0_JqTGo-dvu24AKc3AuHc2YkYZxvsl3O2IKk3neUUlZuWVHwhNyud5T21cMRWwxCA6OMQpZBJcxjcBjQtCC18B4blCKgNRD9BAVIaz5Wx4mNoVMyOqdMAKPCYN1zReaN0F6lv1-S9fl0OVRZ7-w7Kh_qzkY3pr5mOacFL_fj_Gd9AcK0Qlc</recordid><startdate>20200803</startdate><enddate>20200803</enddate><creator>Wei-Cheng, Lai</creator><creator>Schröter, Hendrik</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200803</creationdate><title>Ubicomp Digital 2020 -- Handwriting classification using a convolutional recurrent network</title><author>Wei-Cheng, Lai ; Schröter, Hendrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24305369053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Handwriting</topic><topic>Neural networks</topic><topic>Short term</topic><topic>Time series</topic><topic>Ubiquitous computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei-Cheng, Lai</creatorcontrib><creatorcontrib>Schröter, Hendrik</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei-Cheng, Lai</au><au>Schröter, Hendrik</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Ubicomp Digital 2020 -- Handwriting classification using a convolutional recurrent network</atitle><jtitle>arXiv.org</jtitle><date>2020-08-03</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The Ubicomp Digital 2020 -- Time Series Classification Challenge from STABILO is a challenge about multi-variate time series classification. The data collected from 100 volunteer writers, and contains 15 features measured with multiple sensors on a pen. In this paper,we use a neural network to classify the data into 52 classes, that is lower and upper cases of Arabic letters. The proposed architecture of the neural network a is CNN-LSTM network. It combines convolutional neural network (CNN) for short term context with along short term memory layer (LSTM) for also long term dependencies. We reached an accuracy of 68% on our writer exclusive test set and64.6% on the blind challenge test set resulting in the second place.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2430536905 |
source | Free E- Journals |
subjects | Artificial neural networks Classification Handwriting Neural networks Short term Time series Ubiquitous computing |
title | Ubicomp Digital 2020 -- Handwriting classification using a convolutional recurrent network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Ubicomp%20Digital%202020%20--%20Handwriting%20classification%20using%20a%20convolutional%20recurrent%20network&rft.jtitle=arXiv.org&rft.au=Wei-Cheng,%20Lai&rft.date=2020-08-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2430536905%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430536905&rft_id=info:pmid/&rfr_iscdi=true |