Framework for analyzing the thermoreflectance spectra of metal thermal transducers with spectrally tunable time-domain thermoreflectance

The time-domain thermoreflectance (TDTR) technique has been widely used to measure thermal properties. The design and interpretation of the TDTR experiment rely on an in-depth understanding of the thermoreflectance signature for a given metal thermal transducer. Although the TDTR signals of several...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-08, Vol.128 (5)
Hauptverfasser: Zhang, Liang, Li, Weiqiang, Zhang, Lenan, Zhong, Yang, Guo, Xiao, Li, Long, Wang, Evelyn N., Guo, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of applied physics
container_volume 128
creator Zhang, Liang
Li, Weiqiang
Zhang, Lenan
Zhong, Yang
Guo, Xiao
Li, Long
Wang, Evelyn N.
Guo, Liang
description The time-domain thermoreflectance (TDTR) technique has been widely used to measure thermal properties. The design and interpretation of the TDTR experiment rely on an in-depth understanding of the thermoreflectance signature for a given metal thermal transducer. Although the TDTR signals of several metal thermal transducers have been experimentally investigated, a practical framework bridging the electronic properties and the thermoreflectance characteristics of metal thermal transducers will be helpful for future studies. Compiling published results and our analysis and tests, in this work, we show a theoretical strategy to determine the thermallyinduced change of reflectance spectra with the electronic properties of metal transducers as the input. As a natural consequence of the proposed framework, we show that the optimal probe photon energy occurs near the interband transition threshold of the metal. To validate our approach, TDTR experiments are performed with Au and Cu as two representative metal thermal transducers in two temporal regimes when electrons and lattices have different temperatures (10 ps), respectively. The experimental results show good agreement with the theory. The work fundamentally elucidates the thermally induced optical response of metal thermal transducers and also provides practical guidelines for choosing the appropriate probe photon energy to optimize the TDTR signal for a given metal thermal transducer, which is useful for broadening the adaptability of TDTR to various experimental conditions, materials, and new laser sources.
doi_str_mv 10.1063/5.0015586
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2430500964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430500964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-2a0b031274f7c2b0ba406e31ece89edcd064d0ce1f7657e52438197cc2123f293</originalsourceid><addsrcrecordid>eNqd0LFOwzAQBmALgUQpDLyBJSaQUs52nMQjqiggVWKB2XIch6YkcbAdqvIEPDauCmJgYzjdDZ9-3R1C5wRmBDJ2zWcAhPMiO0ATAoVIcs7hEE0AKEkKkYtjdOL9OiJSMDFBnwunOrOx7hXX1mHVq3b70fQvOKzMrlxnnalbo4PqtcF-iJNT2Na4M0G1e7LrTvW-GrVxHm-asPqRbbvFYexV2ca4pjNJZTvV9H-jT9FRrVpvzr77FD0vbp_m98ny8e5hfrNMNMtoSKiCEhiheVrnmpZQqhQyw4jRphCm0hVkaQXakDrPeG44TVlBRK41JZTVVLAputjnDs6-jcYHubaji2d7GS1wAJGlUV3ulXbW-7imHFzTKbeVBOTu0ZLL70dHe7W3XjdBhcb2_8Pv1v1COVQ1-wJZyo9y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430500964</pqid></control><display><type>article</type><title>Framework for analyzing the thermoreflectance spectra of metal thermal transducers with spectrally tunable time-domain thermoreflectance</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhang, Liang ; Li, Weiqiang ; Zhang, Lenan ; Zhong, Yang ; Guo, Xiao ; Li, Long ; Wang, Evelyn N. ; Guo, Liang</creator><creatorcontrib>Zhang, Liang ; Li, Weiqiang ; Zhang, Lenan ; Zhong, Yang ; Guo, Xiao ; Li, Long ; Wang, Evelyn N. ; Guo, Liang</creatorcontrib><description>The time-domain thermoreflectance (TDTR) technique has been widely used to measure thermal properties. The design and interpretation of the TDTR experiment rely on an in-depth understanding of the thermoreflectance signature for a given metal thermal transducer. Although the TDTR signals of several metal thermal transducers have been experimentally investigated, a practical framework bridging the electronic properties and the thermoreflectance characteristics of metal thermal transducers will be helpful for future studies. Compiling published results and our analysis and tests, in this work, we show a theoretical strategy to determine the thermallyinduced change of reflectance spectra with the electronic properties of metal transducers as the input. As a natural consequence of the proposed framework, we show that the optimal probe photon energy occurs near the interband transition threshold of the metal. To validate our approach, TDTR experiments are performed with Au and Cu as two representative metal thermal transducers in two temporal regimes when electrons and lattices have different temperatures (&lt;10 ps) and reach thermal equilibrium (&gt;10 ps), respectively. The experimental results show good agreement with the theory. The work fundamentally elucidates the thermally induced optical response of metal thermal transducers and also provides practical guidelines for choosing the appropriate probe photon energy to optimize the TDTR signal for a given metal thermal transducer, which is useful for broadening the adaptability of TDTR to various experimental conditions, materials, and new laser sources.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0015586</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Copper ; Gold ; Lattices ; Optimization ; Photons ; Spectra ; Thermodynamic properties ; Time domain analysis ; Transducers</subject><ispartof>Journal of applied physics, 2020-08, Vol.128 (5)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-2a0b031274f7c2b0ba406e31ece89edcd064d0ce1f7657e52438197cc2123f293</citedby><cites>FETCH-LOGICAL-c362t-2a0b031274f7c2b0ba406e31ece89edcd064d0ce1f7657e52438197cc2123f293</cites><orcidid>0000-0002-8134-5574 ; 0000-0001-6748-903X ; 0000-0001-7045-1200 ; 0000-0002-8740-2736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0015586$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids></links><search><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Li, Weiqiang</creatorcontrib><creatorcontrib>Zhang, Lenan</creatorcontrib><creatorcontrib>Zhong, Yang</creatorcontrib><creatorcontrib>Guo, Xiao</creatorcontrib><creatorcontrib>Li, Long</creatorcontrib><creatorcontrib>Wang, Evelyn N.</creatorcontrib><creatorcontrib>Guo, Liang</creatorcontrib><title>Framework for analyzing the thermoreflectance spectra of metal thermal transducers with spectrally tunable time-domain thermoreflectance</title><title>Journal of applied physics</title><description>The time-domain thermoreflectance (TDTR) technique has been widely used to measure thermal properties. The design and interpretation of the TDTR experiment rely on an in-depth understanding of the thermoreflectance signature for a given metal thermal transducer. Although the TDTR signals of several metal thermal transducers have been experimentally investigated, a practical framework bridging the electronic properties and the thermoreflectance characteristics of metal thermal transducers will be helpful for future studies. Compiling published results and our analysis and tests, in this work, we show a theoretical strategy to determine the thermallyinduced change of reflectance spectra with the electronic properties of metal transducers as the input. As a natural consequence of the proposed framework, we show that the optimal probe photon energy occurs near the interband transition threshold of the metal. To validate our approach, TDTR experiments are performed with Au and Cu as two representative metal thermal transducers in two temporal regimes when electrons and lattices have different temperatures (&lt;10 ps) and reach thermal equilibrium (&gt;10 ps), respectively. The experimental results show good agreement with the theory. The work fundamentally elucidates the thermally induced optical response of metal thermal transducers and also provides practical guidelines for choosing the appropriate probe photon energy to optimize the TDTR signal for a given metal thermal transducer, which is useful for broadening the adaptability of TDTR to various experimental conditions, materials, and new laser sources.</description><subject>Applied physics</subject><subject>Copper</subject><subject>Gold</subject><subject>Lattices</subject><subject>Optimization</subject><subject>Photons</subject><subject>Spectra</subject><subject>Thermodynamic properties</subject><subject>Time domain analysis</subject><subject>Transducers</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0LFOwzAQBmALgUQpDLyBJSaQUs52nMQjqiggVWKB2XIch6YkcbAdqvIEPDauCmJgYzjdDZ9-3R1C5wRmBDJ2zWcAhPMiO0ATAoVIcs7hEE0AKEkKkYtjdOL9OiJSMDFBnwunOrOx7hXX1mHVq3b70fQvOKzMrlxnnalbo4PqtcF-iJNT2Na4M0G1e7LrTvW-GrVxHm-asPqRbbvFYexV2ca4pjNJZTvV9H-jT9FRrVpvzr77FD0vbp_m98ny8e5hfrNMNMtoSKiCEhiheVrnmpZQqhQyw4jRphCm0hVkaQXakDrPeG44TVlBRK41JZTVVLAputjnDs6-jcYHubaji2d7GS1wAJGlUV3ulXbW-7imHFzTKbeVBOTu0ZLL70dHe7W3XjdBhcb2_8Pv1v1COVQ1-wJZyo9y</recordid><startdate>20200807</startdate><enddate>20200807</enddate><creator>Zhang, Liang</creator><creator>Li, Weiqiang</creator><creator>Zhang, Lenan</creator><creator>Zhong, Yang</creator><creator>Guo, Xiao</creator><creator>Li, Long</creator><creator>Wang, Evelyn N.</creator><creator>Guo, Liang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8134-5574</orcidid><orcidid>https://orcid.org/0000-0001-6748-903X</orcidid><orcidid>https://orcid.org/0000-0001-7045-1200</orcidid><orcidid>https://orcid.org/0000-0002-8740-2736</orcidid></search><sort><creationdate>20200807</creationdate><title>Framework for analyzing the thermoreflectance spectra of metal thermal transducers with spectrally tunable time-domain thermoreflectance</title><author>Zhang, Liang ; Li, Weiqiang ; Zhang, Lenan ; Zhong, Yang ; Guo, Xiao ; Li, Long ; Wang, Evelyn N. ; Guo, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-2a0b031274f7c2b0ba406e31ece89edcd064d0ce1f7657e52438197cc2123f293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Copper</topic><topic>Gold</topic><topic>Lattices</topic><topic>Optimization</topic><topic>Photons</topic><topic>Spectra</topic><topic>Thermodynamic properties</topic><topic>Time domain analysis</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Li, Weiqiang</creatorcontrib><creatorcontrib>Zhang, Lenan</creatorcontrib><creatorcontrib>Zhong, Yang</creatorcontrib><creatorcontrib>Guo, Xiao</creatorcontrib><creatorcontrib>Li, Long</creatorcontrib><creatorcontrib>Wang, Evelyn N.</creatorcontrib><creatorcontrib>Guo, Liang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Liang</au><au>Li, Weiqiang</au><au>Zhang, Lenan</au><au>Zhong, Yang</au><au>Guo, Xiao</au><au>Li, Long</au><au>Wang, Evelyn N.</au><au>Guo, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Framework for analyzing the thermoreflectance spectra of metal thermal transducers with spectrally tunable time-domain thermoreflectance</atitle><jtitle>Journal of applied physics</jtitle><date>2020-08-07</date><risdate>2020</risdate><volume>128</volume><issue>5</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The time-domain thermoreflectance (TDTR) technique has been widely used to measure thermal properties. The design and interpretation of the TDTR experiment rely on an in-depth understanding of the thermoreflectance signature for a given metal thermal transducer. Although the TDTR signals of several metal thermal transducers have been experimentally investigated, a practical framework bridging the electronic properties and the thermoreflectance characteristics of metal thermal transducers will be helpful for future studies. Compiling published results and our analysis and tests, in this work, we show a theoretical strategy to determine the thermallyinduced change of reflectance spectra with the electronic properties of metal transducers as the input. As a natural consequence of the proposed framework, we show that the optimal probe photon energy occurs near the interband transition threshold of the metal. To validate our approach, TDTR experiments are performed with Au and Cu as two representative metal thermal transducers in two temporal regimes when electrons and lattices have different temperatures (&lt;10 ps) and reach thermal equilibrium (&gt;10 ps), respectively. The experimental results show good agreement with the theory. The work fundamentally elucidates the thermally induced optical response of metal thermal transducers and also provides practical guidelines for choosing the appropriate probe photon energy to optimize the TDTR signal for a given metal thermal transducer, which is useful for broadening the adaptability of TDTR to various experimental conditions, materials, and new laser sources.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0015586</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8134-5574</orcidid><orcidid>https://orcid.org/0000-0001-6748-903X</orcidid><orcidid>https://orcid.org/0000-0001-7045-1200</orcidid><orcidid>https://orcid.org/0000-0002-8740-2736</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-08, Vol.128 (5)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2430500964
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Copper
Gold
Lattices
Optimization
Photons
Spectra
Thermodynamic properties
Time domain analysis
Transducers
title Framework for analyzing the thermoreflectance spectra of metal thermal transducers with spectrally tunable time-domain thermoreflectance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Framework%20for%20analyzing%20the%20thermoreflectance%20spectra%20of%20metal%20thermal%20transducers%20with%20spectrally%20tunable%20time-domain%20thermoreflectance&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Zhang,%20Liang&rft.date=2020-08-07&rft.volume=128&rft.issue=5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0015586&rft_dat=%3Cproquest_scita%3E2430500964%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430500964&rft_id=info:pmid/&rfr_iscdi=true