Magnetic phase transitions and spin density distribution in the molecular multiferroic system GaV4S8

We have carried out neutron diffraction and small-angle neutron scattering measurements on a high-quality single crystal of the cubic lacunar spinel multiferroic, GaV4S8, as a function of magnetic field and temperature to determine the magnetic properties for the single electron that is located on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-07, Vol.102 (1), p.1
Hauptverfasser: Dally, Rebecca L, Ratcliff, William D, Zhang, Lunyong, Kim, Heung-Sik, Bleuel, Markus, Kim, J W, Haule, Kristjan, Vanderbilt, David, Cheong, Sang-Wook, Lynn, Jeffrey W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1
container_title Physical review. B
container_volume 102
creator Dally, Rebecca L
Ratcliff, William D
Zhang, Lunyong
Kim, Heung-Sik
Bleuel, Markus
Kim, J W
Haule, Kristjan
Vanderbilt, David
Cheong, Sang-Wook
Lynn, Jeffrey W
description We have carried out neutron diffraction and small-angle neutron scattering measurements on a high-quality single crystal of the cubic lacunar spinel multiferroic, GaV4S8, as a function of magnetic field and temperature to determine the magnetic properties for the single electron that is located on the tetrahedrally coordinated V4 molecular unit. Our results are in good agreement with the structural transition at 44 K from cubic to rhombohedral symmetry where the system becomes a robust ferroelectric, while long-range magnetic order develops below 13 K in the form of an incommensurate cycloidal magnetic structure, which can transform into a Néel-type skyrmion phase in a modest applied magnetic field. Below 5.9(3) K, the crystal enters a ferromagnetic phase, and we find the magnetic order parameter indicates a long-range-ordered ground state with an ordered moment of 0.23(1) μB per V ion. Both polarized and unpolarized neutron data in the ferroelectric-paramagnetic phase have been measured to determine the magnetic form factor. The data are consistent with a model of the single spin being uniformly distributed across the V4 molecular unit, rather than residing on the single apical V ion, in substantial agreement with the results of first-principles theory. In the magnetically ordered state, polarized neutron measurements are important since both the cycloidal and ferromagnetic order parameters are clearly coupled to the ferroelectricity, causing the structural peaks to be temperature and field dependent. For the ferromagnetic ground state, the spins are locked along the [1,1,1] direction by a surprisingly large anisotropy.
doi_str_mv 10.1103/PhysRevB.102.014410
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2430407315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430407315</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-8cddfbfdabe7f725ba31c2e69174b693925a3df2edd7edd429fbfa9796d868193</originalsourceid><addsrcrecordid>eNo9TV9LwzAcDKLgmPsEvgR87swvSZP-HnXoJkwU_72OtEldRtfWJBX27e1QfDjuuDvuCLkENgdg4vp5e4gv7vt2DozPGUgJ7IRMuFSYISo8_dc5OyezGHeMMVAMNcMJsY_ms3XJV7TfmuhoCqaNPvmujdS0lsbet9S6o3eg1scUfDkcYzr6aevovmtcNTQm0P3QJF-7ELpxLR5icnu6NB_ytbggZ7Vpopv98ZS839-9LVbZ-mn5sLhZZz2ASFlRWVuXtTWl07XmeWkEVNwpBC1LhQJ5boStubNWj5Acx7ZBjcoWqgAUU3L1u9uH7mtwMW123RDa8XLDpWCSaQG5-AFfaFzn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430407315</pqid></control><display><type>article</type><title>Magnetic phase transitions and spin density distribution in the molecular multiferroic system GaV4S8</title><source>American Physical Society Journals</source><creator>Dally, Rebecca L ; Ratcliff, William D ; Zhang, Lunyong ; Kim, Heung-Sik ; Bleuel, Markus ; Kim, J W ; Haule, Kristjan ; Vanderbilt, David ; Cheong, Sang-Wook ; Lynn, Jeffrey W</creator><creatorcontrib>Dally, Rebecca L ; Ratcliff, William D ; Zhang, Lunyong ; Kim, Heung-Sik ; Bleuel, Markus ; Kim, J W ; Haule, Kristjan ; Vanderbilt, David ; Cheong, Sang-Wook ; Lynn, Jeffrey W</creatorcontrib><description>We have carried out neutron diffraction and small-angle neutron scattering measurements on a high-quality single crystal of the cubic lacunar spinel multiferroic, GaV4S8, as a function of magnetic field and temperature to determine the magnetic properties for the single electron that is located on the tetrahedrally coordinated V4 molecular unit. Our results are in good agreement with the structural transition at 44 K from cubic to rhombohedral symmetry where the system becomes a robust ferroelectric, while long-range magnetic order develops below 13 K in the form of an incommensurate cycloidal magnetic structure, which can transform into a Néel-type skyrmion phase in a modest applied magnetic field. Below 5.9(3) K, the crystal enters a ferromagnetic phase, and we find the magnetic order parameter indicates a long-range-ordered ground state with an ordered moment of 0.23(1) μB per V ion. Both polarized and unpolarized neutron data in the ferroelectric-paramagnetic phase have been measured to determine the magnetic form factor. The data are consistent with a model of the single spin being uniformly distributed across the V4 molecular unit, rather than residing on the single apical V ion, in substantial agreement with the results of first-principles theory. In the magnetically ordered state, polarized neutron measurements are important since both the cycloidal and ferromagnetic order parameters are clearly coupled to the ferroelectricity, causing the structural peaks to be temperature and field dependent. For the ferromagnetic ground state, the spins are locked along the [1,1,1] direction by a surprisingly large anisotropy.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.014410</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anisotropy ; Density distribution ; Ferroelectric materials ; Ferroelectricity ; Ferromagnetic phases ; Ferromagnetism ; First principles ; Form factors ; Ground state ; Hypothetical particles ; Magnetic fields ; Magnetic properties ; Magnetic structure ; Magnetism ; Multiferroic materials ; Neutron diffraction ; Neutron scattering ; Neutrons ; Order parameters ; Particle theory ; Phase transitions ; Single crystals ; Single electrons ; Temperature dependence</subject><ispartof>Physical review. B, 2020-07, Vol.102 (1), p.1</ispartof><rights>Copyright American Physical Society Jul 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dally, Rebecca L</creatorcontrib><creatorcontrib>Ratcliff, William D</creatorcontrib><creatorcontrib>Zhang, Lunyong</creatorcontrib><creatorcontrib>Kim, Heung-Sik</creatorcontrib><creatorcontrib>Bleuel, Markus</creatorcontrib><creatorcontrib>Kim, J W</creatorcontrib><creatorcontrib>Haule, Kristjan</creatorcontrib><creatorcontrib>Vanderbilt, David</creatorcontrib><creatorcontrib>Cheong, Sang-Wook</creatorcontrib><creatorcontrib>Lynn, Jeffrey W</creatorcontrib><title>Magnetic phase transitions and spin density distribution in the molecular multiferroic system GaV4S8</title><title>Physical review. B</title><description>We have carried out neutron diffraction and small-angle neutron scattering measurements on a high-quality single crystal of the cubic lacunar spinel multiferroic, GaV4S8, as a function of magnetic field and temperature to determine the magnetic properties for the single electron that is located on the tetrahedrally coordinated V4 molecular unit. Our results are in good agreement with the structural transition at 44 K from cubic to rhombohedral symmetry where the system becomes a robust ferroelectric, while long-range magnetic order develops below 13 K in the form of an incommensurate cycloidal magnetic structure, which can transform into a Néel-type skyrmion phase in a modest applied magnetic field. Below 5.9(3) K, the crystal enters a ferromagnetic phase, and we find the magnetic order parameter indicates a long-range-ordered ground state with an ordered moment of 0.23(1) μB per V ion. Both polarized and unpolarized neutron data in the ferroelectric-paramagnetic phase have been measured to determine the magnetic form factor. The data are consistent with a model of the single spin being uniformly distributed across the V4 molecular unit, rather than residing on the single apical V ion, in substantial agreement with the results of first-principles theory. In the magnetically ordered state, polarized neutron measurements are important since both the cycloidal and ferromagnetic order parameters are clearly coupled to the ferroelectricity, causing the structural peaks to be temperature and field dependent. For the ferromagnetic ground state, the spins are locked along the [1,1,1] direction by a surprisingly large anisotropy.</description><subject>Anisotropy</subject><subject>Density distribution</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferromagnetic phases</subject><subject>Ferromagnetism</subject><subject>First principles</subject><subject>Form factors</subject><subject>Ground state</subject><subject>Hypothetical particles</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetic structure</subject><subject>Magnetism</subject><subject>Multiferroic materials</subject><subject>Neutron diffraction</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Order parameters</subject><subject>Particle theory</subject><subject>Phase transitions</subject><subject>Single crystals</subject><subject>Single electrons</subject><subject>Temperature dependence</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9TV9LwzAcDKLgmPsEvgR87swvSZP-HnXoJkwU_72OtEldRtfWJBX27e1QfDjuuDvuCLkENgdg4vp5e4gv7vt2DozPGUgJ7IRMuFSYISo8_dc5OyezGHeMMVAMNcMJsY_ms3XJV7TfmuhoCqaNPvmujdS0lsbet9S6o3eg1scUfDkcYzr6aevovmtcNTQm0P3QJF-7ELpxLR5icnu6NB_ytbggZ7Vpopv98ZS839-9LVbZ-mn5sLhZZz2ASFlRWVuXtTWl07XmeWkEVNwpBC1LhQJ5boStubNWj5Acx7ZBjcoWqgAUU3L1u9uH7mtwMW123RDa8XLDpWCSaQG5-AFfaFzn</recordid><startdate>20200707</startdate><enddate>20200707</enddate><creator>Dally, Rebecca L</creator><creator>Ratcliff, William D</creator><creator>Zhang, Lunyong</creator><creator>Kim, Heung-Sik</creator><creator>Bleuel, Markus</creator><creator>Kim, J W</creator><creator>Haule, Kristjan</creator><creator>Vanderbilt, David</creator><creator>Cheong, Sang-Wook</creator><creator>Lynn, Jeffrey W</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200707</creationdate><title>Magnetic phase transitions and spin density distribution in the molecular multiferroic system GaV4S8</title><author>Dally, Rebecca L ; Ratcliff, William D ; Zhang, Lunyong ; Kim, Heung-Sik ; Bleuel, Markus ; Kim, J W ; Haule, Kristjan ; Vanderbilt, David ; Cheong, Sang-Wook ; Lynn, Jeffrey W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-8cddfbfdabe7f725ba31c2e69174b693925a3df2edd7edd429fbfa9796d868193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Density distribution</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferromagnetic phases</topic><topic>Ferromagnetism</topic><topic>First principles</topic><topic>Form factors</topic><topic>Ground state</topic><topic>Hypothetical particles</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetic structure</topic><topic>Magnetism</topic><topic>Multiferroic materials</topic><topic>Neutron diffraction</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Order parameters</topic><topic>Particle theory</topic><topic>Phase transitions</topic><topic>Single crystals</topic><topic>Single electrons</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dally, Rebecca L</creatorcontrib><creatorcontrib>Ratcliff, William D</creatorcontrib><creatorcontrib>Zhang, Lunyong</creatorcontrib><creatorcontrib>Kim, Heung-Sik</creatorcontrib><creatorcontrib>Bleuel, Markus</creatorcontrib><creatorcontrib>Kim, J W</creatorcontrib><creatorcontrib>Haule, Kristjan</creatorcontrib><creatorcontrib>Vanderbilt, David</creatorcontrib><creatorcontrib>Cheong, Sang-Wook</creatorcontrib><creatorcontrib>Lynn, Jeffrey W</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dally, Rebecca L</au><au>Ratcliff, William D</au><au>Zhang, Lunyong</au><au>Kim, Heung-Sik</au><au>Bleuel, Markus</au><au>Kim, J W</au><au>Haule, Kristjan</au><au>Vanderbilt, David</au><au>Cheong, Sang-Wook</au><au>Lynn, Jeffrey W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic phase transitions and spin density distribution in the molecular multiferroic system GaV4S8</atitle><jtitle>Physical review. B</jtitle><date>2020-07-07</date><risdate>2020</risdate><volume>102</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We have carried out neutron diffraction and small-angle neutron scattering measurements on a high-quality single crystal of the cubic lacunar spinel multiferroic, GaV4S8, as a function of magnetic field and temperature to determine the magnetic properties for the single electron that is located on the tetrahedrally coordinated V4 molecular unit. Our results are in good agreement with the structural transition at 44 K from cubic to rhombohedral symmetry where the system becomes a robust ferroelectric, while long-range magnetic order develops below 13 K in the form of an incommensurate cycloidal magnetic structure, which can transform into a Néel-type skyrmion phase in a modest applied magnetic field. Below 5.9(3) K, the crystal enters a ferromagnetic phase, and we find the magnetic order parameter indicates a long-range-ordered ground state with an ordered moment of 0.23(1) μB per V ion. Both polarized and unpolarized neutron data in the ferroelectric-paramagnetic phase have been measured to determine the magnetic form factor. The data are consistent with a model of the single spin being uniformly distributed across the V4 molecular unit, rather than residing on the single apical V ion, in substantial agreement with the results of first-principles theory. In the magnetically ordered state, polarized neutron measurements are important since both the cycloidal and ferromagnetic order parameters are clearly coupled to the ferroelectricity, causing the structural peaks to be temperature and field dependent. For the ferromagnetic ground state, the spins are locked along the [1,1,1] direction by a surprisingly large anisotropy.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.102.014410</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-07, Vol.102 (1), p.1
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2430407315
source American Physical Society Journals
subjects Anisotropy
Density distribution
Ferroelectric materials
Ferroelectricity
Ferromagnetic phases
Ferromagnetism
First principles
Form factors
Ground state
Hypothetical particles
Magnetic fields
Magnetic properties
Magnetic structure
Magnetism
Multiferroic materials
Neutron diffraction
Neutron scattering
Neutrons
Order parameters
Particle theory
Phase transitions
Single crystals
Single electrons
Temperature dependence
title Magnetic phase transitions and spin density distribution in the molecular multiferroic system GaV4S8
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20phase%20transitions%20and%20spin%20density%20distribution%20in%20the%20molecular%20multiferroic%20system%20GaV4S8&rft.jtitle=Physical%20review.%20B&rft.au=Dally,%20Rebecca%20L&rft.date=2020-07-07&rft.volume=102&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.014410&rft_dat=%3Cproquest%3E2430407315%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430407315&rft_id=info:pmid/&rfr_iscdi=true