Simulating lattice gauge theories within quantum technologies

Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2020-08, Vol.74 (8), Article 165
Hauptverfasser: Bañuls, Mari Carmen, Blatt, Rainer, Catani, Jacopo, Celi, Alessio, Cirac, Juan Ignacio, Dalmonte, Marcello, Fallani, Leonardo, Jansen, Karl, Lewenstein, Maciej, Montangero, Simone, Muschik, Christine A., Reznik, Benni, Rico, Enrique, Tagliacozzo, Luca, Van Acoleyen, Karel, Verstraete, Frank, Wiese, Uwe-Jens, Wingate, Matthew, Zakrzewski, Jakub, Zoller, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title The European physical journal. D, Atomic, molecular, and optical physics
container_volume 74
creator Bañuls, Mari Carmen
Blatt, Rainer
Catani, Jacopo
Celi, Alessio
Cirac, Juan Ignacio
Dalmonte, Marcello
Fallani, Leonardo
Jansen, Karl
Lewenstein, Maciej
Montangero, Simone
Muschik, Christine A.
Reznik, Benni
Rico, Enrique
Tagliacozzo, Luca
Van Acoleyen, Karel
Verstraete, Frank
Wiese, Uwe-Jens
Wingate, Matthew
Zakrzewski, Jakub
Zoller, Peter
description Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum information science. In this way, lattice gauge theories provide both motivation and a framework for interdisciplinary research towards the development of special purpose digital and analog quantum simulators, and ultimately of scalable universal quantum computers. In this manuscript, recent results and new tools from a quantum science approach to study lattice gauge theories are reviewed. Two new complementary approaches are discussed: first, tensor network methods are presented – a classical simulation approach – applied to the study of lattice gauge theories together with some results on Abelian and non-Abelian lattice gauge theories. Then, recent proposals for the implementation of lattice gauge theory quantum simulators in different quantum hardware are reported, e.g., trapped ions, Rydberg atoms, and superconducting circuits. Finally, the first proof-of-principle trapped ions experimental quantum simulations of the Schwinger model are reviewed. Graphical abstract
doi_str_mv 10.1140/epjd/e2020-100571-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2430393086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430393086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-f7f6105a9a0999798afbd2a91de0ae4d061bed55877e8bd11655a599fb64020b3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwC7hE4hy6jl_xgQOqeElIHICz5SSb1FWbtLYjxL_HJQhunGalnZnVfoRcUrimlMMCd-tmgQUUkFMAoWheHpEZ5YznEpQ-_p0lnJKzENYAUAguZ-Tm1W3HjY2u77Ik0dWYdXbsMIsrHLzDkH24uHJ9th9tH8dtFrFe9cNm6NLunJy0dhPw4kfn5P3-7m35mD-_PDwtb5_zmkkV81a1koKw2oLWWunStlVTWE0bBIu8AUkrbIQolcKyaiiVQlihdVtJnn6q2JxcTb07P-xHDNGsh9H36aQpOAOmGZQyudjkqv0QgsfW7LzbWv9pKJgDJ3PgZL45mYmTKVOKT6mQ3H2H_q_7v9gXq-ttiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430393086</pqid></control><display><type>article</type><title>Simulating lattice gauge theories within quantum technologies</title><source>SpringerLink Journals</source><creator>Bañuls, Mari Carmen ; Blatt, Rainer ; Catani, Jacopo ; Celi, Alessio ; Cirac, Juan Ignacio ; Dalmonte, Marcello ; Fallani, Leonardo ; Jansen, Karl ; Lewenstein, Maciej ; Montangero, Simone ; Muschik, Christine A. ; Reznik, Benni ; Rico, Enrique ; Tagliacozzo, Luca ; Van Acoleyen, Karel ; Verstraete, Frank ; Wiese, Uwe-Jens ; Wingate, Matthew ; Zakrzewski, Jakub ; Zoller, Peter</creator><creatorcontrib>Bañuls, Mari Carmen ; Blatt, Rainer ; Catani, Jacopo ; Celi, Alessio ; Cirac, Juan Ignacio ; Dalmonte, Marcello ; Fallani, Leonardo ; Jansen, Karl ; Lewenstein, Maciej ; Montangero, Simone ; Muschik, Christine A. ; Reznik, Benni ; Rico, Enrique ; Tagliacozzo, Luca ; Van Acoleyen, Karel ; Verstraete, Frank ; Wiese, Uwe-Jens ; Wingate, Matthew ; Zakrzewski, Jakub ; Zoller, Peter</creatorcontrib><description>Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum information science. In this way, lattice gauge theories provide both motivation and a framework for interdisciplinary research towards the development of special purpose digital and analog quantum simulators, and ultimately of scalable universal quantum computers. In this manuscript, recent results and new tools from a quantum science approach to study lattice gauge theories are reviewed. Two new complementary approaches are discussed: first, tensor network methods are presented – a classical simulation approach – applied to the study of lattice gauge theories together with some results on Abelian and non-Abelian lattice gauge theories. Then, recent proposals for the implementation of lattice gauge theory quantum simulators in different quantum hardware are reported, e.g., trapped ions, Rydberg atoms, and superconducting circuits. Finally, the first proof-of-principle trapped ions experimental quantum simulations of the Schwinger model are reviewed. Graphical abstract</description><identifier>ISSN: 1434-6060</identifier><identifier>EISSN: 1434-6079</identifier><identifier>DOI: 10.1140/epjd/e2020-100571-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analog computers ; Applications of Nonlinear Dynamics and Chaos Theory ; Atomic ; Colloquium ; Computer simulation ; Condensed matter physics ; Gauge theory ; Interdisciplinary studies ; Molecular ; Optical and Plasma Physics ; Particle physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum chromodynamics ; Quantum computers ; Quantum computing ; Quantum Information Technology ; Quantum phenomena ; Quantum Physics ; Simulators ; Spectroscopy/Spectrometry ; Spintronics ; Tensors</subject><ispartof>The European physical journal. D, Atomic, molecular, and optical physics, 2020-08, Vol.74 (8), Article 165</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-f7f6105a9a0999798afbd2a91de0ae4d061bed55877e8bd11655a599fb64020b3</citedby><cites>FETCH-LOGICAL-c367t-f7f6105a9a0999798afbd2a91de0ae4d061bed55877e8bd11655a599fb64020b3</cites><orcidid>0000-0003-4939-084X ; 0000-0003-4414-6821 ; 0000-0001-5338-4181 ; 0000-0002-0210-7800 ; 0000-0003-0998-9460 ; 0000-0001-6419-6610 ; 0000-0002-2951-7041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjd/e2020-100571-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjd/e2020-100571-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bañuls, Mari Carmen</creatorcontrib><creatorcontrib>Blatt, Rainer</creatorcontrib><creatorcontrib>Catani, Jacopo</creatorcontrib><creatorcontrib>Celi, Alessio</creatorcontrib><creatorcontrib>Cirac, Juan Ignacio</creatorcontrib><creatorcontrib>Dalmonte, Marcello</creatorcontrib><creatorcontrib>Fallani, Leonardo</creatorcontrib><creatorcontrib>Jansen, Karl</creatorcontrib><creatorcontrib>Lewenstein, Maciej</creatorcontrib><creatorcontrib>Montangero, Simone</creatorcontrib><creatorcontrib>Muschik, Christine A.</creatorcontrib><creatorcontrib>Reznik, Benni</creatorcontrib><creatorcontrib>Rico, Enrique</creatorcontrib><creatorcontrib>Tagliacozzo, Luca</creatorcontrib><creatorcontrib>Van Acoleyen, Karel</creatorcontrib><creatorcontrib>Verstraete, Frank</creatorcontrib><creatorcontrib>Wiese, Uwe-Jens</creatorcontrib><creatorcontrib>Wingate, Matthew</creatorcontrib><creatorcontrib>Zakrzewski, Jakub</creatorcontrib><creatorcontrib>Zoller, Peter</creatorcontrib><title>Simulating lattice gauge theories within quantum technologies</title><title>The European physical journal. D, Atomic, molecular, and optical physics</title><addtitle>Eur. Phys. J. D</addtitle><description>Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum information science. In this way, lattice gauge theories provide both motivation and a framework for interdisciplinary research towards the development of special purpose digital and analog quantum simulators, and ultimately of scalable universal quantum computers. In this manuscript, recent results and new tools from a quantum science approach to study lattice gauge theories are reviewed. Two new complementary approaches are discussed: first, tensor network methods are presented – a classical simulation approach – applied to the study of lattice gauge theories together with some results on Abelian and non-Abelian lattice gauge theories. Then, recent proposals for the implementation of lattice gauge theory quantum simulators in different quantum hardware are reported, e.g., trapped ions, Rydberg atoms, and superconducting circuits. Finally, the first proof-of-principle trapped ions experimental quantum simulations of the Schwinger model are reviewed. Graphical abstract</description><subject>Analog computers</subject><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Atomic</subject><subject>Colloquium</subject><subject>Computer simulation</subject><subject>Condensed matter physics</subject><subject>Gauge theory</subject><subject>Interdisciplinary studies</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum chromodynamics</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum Information Technology</subject><subject>Quantum phenomena</subject><subject>Quantum Physics</subject><subject>Simulators</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spintronics</subject><subject>Tensors</subject><issn>1434-6060</issn><issn>1434-6079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwC7hE4hy6jl_xgQOqeElIHICz5SSb1FWbtLYjxL_HJQhunGalnZnVfoRcUrimlMMCd-tmgQUUkFMAoWheHpEZ5YznEpQ-_p0lnJKzENYAUAguZ-Tm1W3HjY2u77Ik0dWYdXbsMIsrHLzDkH24uHJ9th9tH8dtFrFe9cNm6NLunJy0dhPw4kfn5P3-7m35mD-_PDwtb5_zmkkV81a1koKw2oLWWunStlVTWE0bBIu8AUkrbIQolcKyaiiVQlihdVtJnn6q2JxcTb07P-xHDNGsh9H36aQpOAOmGZQyudjkqv0QgsfW7LzbWv9pKJgDJ3PgZL45mYmTKVOKT6mQ3H2H_q_7v9gXq-ttiA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Bañuls, Mari Carmen</creator><creator>Blatt, Rainer</creator><creator>Catani, Jacopo</creator><creator>Celi, Alessio</creator><creator>Cirac, Juan Ignacio</creator><creator>Dalmonte, Marcello</creator><creator>Fallani, Leonardo</creator><creator>Jansen, Karl</creator><creator>Lewenstein, Maciej</creator><creator>Montangero, Simone</creator><creator>Muschik, Christine A.</creator><creator>Reznik, Benni</creator><creator>Rico, Enrique</creator><creator>Tagliacozzo, Luca</creator><creator>Van Acoleyen, Karel</creator><creator>Verstraete, Frank</creator><creator>Wiese, Uwe-Jens</creator><creator>Wingate, Matthew</creator><creator>Zakrzewski, Jakub</creator><creator>Zoller, Peter</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4939-084X</orcidid><orcidid>https://orcid.org/0000-0003-4414-6821</orcidid><orcidid>https://orcid.org/0000-0001-5338-4181</orcidid><orcidid>https://orcid.org/0000-0002-0210-7800</orcidid><orcidid>https://orcid.org/0000-0003-0998-9460</orcidid><orcidid>https://orcid.org/0000-0001-6419-6610</orcidid><orcidid>https://orcid.org/0000-0002-2951-7041</orcidid></search><sort><creationdate>20200801</creationdate><title>Simulating lattice gauge theories within quantum technologies</title><author>Bañuls, Mari Carmen ; Blatt, Rainer ; Catani, Jacopo ; Celi, Alessio ; Cirac, Juan Ignacio ; Dalmonte, Marcello ; Fallani, Leonardo ; Jansen, Karl ; Lewenstein, Maciej ; Montangero, Simone ; Muschik, Christine A. ; Reznik, Benni ; Rico, Enrique ; Tagliacozzo, Luca ; Van Acoleyen, Karel ; Verstraete, Frank ; Wiese, Uwe-Jens ; Wingate, Matthew ; Zakrzewski, Jakub ; Zoller, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-f7f6105a9a0999798afbd2a91de0ae4d061bed55877e8bd11655a599fb64020b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analog computers</topic><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Atomic</topic><topic>Colloquium</topic><topic>Computer simulation</topic><topic>Condensed matter physics</topic><topic>Gauge theory</topic><topic>Interdisciplinary studies</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum chromodynamics</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum Information Technology</topic><topic>Quantum phenomena</topic><topic>Quantum Physics</topic><topic>Simulators</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spintronics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bañuls, Mari Carmen</creatorcontrib><creatorcontrib>Blatt, Rainer</creatorcontrib><creatorcontrib>Catani, Jacopo</creatorcontrib><creatorcontrib>Celi, Alessio</creatorcontrib><creatorcontrib>Cirac, Juan Ignacio</creatorcontrib><creatorcontrib>Dalmonte, Marcello</creatorcontrib><creatorcontrib>Fallani, Leonardo</creatorcontrib><creatorcontrib>Jansen, Karl</creatorcontrib><creatorcontrib>Lewenstein, Maciej</creatorcontrib><creatorcontrib>Montangero, Simone</creatorcontrib><creatorcontrib>Muschik, Christine A.</creatorcontrib><creatorcontrib>Reznik, Benni</creatorcontrib><creatorcontrib>Rico, Enrique</creatorcontrib><creatorcontrib>Tagliacozzo, Luca</creatorcontrib><creatorcontrib>Van Acoleyen, Karel</creatorcontrib><creatorcontrib>Verstraete, Frank</creatorcontrib><creatorcontrib>Wiese, Uwe-Jens</creatorcontrib><creatorcontrib>Wingate, Matthew</creatorcontrib><creatorcontrib>Zakrzewski, Jakub</creatorcontrib><creatorcontrib>Zoller, Peter</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bañuls, Mari Carmen</au><au>Blatt, Rainer</au><au>Catani, Jacopo</au><au>Celi, Alessio</au><au>Cirac, Juan Ignacio</au><au>Dalmonte, Marcello</au><au>Fallani, Leonardo</au><au>Jansen, Karl</au><au>Lewenstein, Maciej</au><au>Montangero, Simone</au><au>Muschik, Christine A.</au><au>Reznik, Benni</au><au>Rico, Enrique</au><au>Tagliacozzo, Luca</au><au>Van Acoleyen, Karel</au><au>Verstraete, Frank</au><au>Wiese, Uwe-Jens</au><au>Wingate, Matthew</au><au>Zakrzewski, Jakub</au><au>Zoller, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating lattice gauge theories within quantum technologies</atitle><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle><stitle>Eur. Phys. J. D</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>74</volume><issue>8</issue><artnum>165</artnum><issn>1434-6060</issn><eissn>1434-6079</eissn><abstract>Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum information science. In this way, lattice gauge theories provide both motivation and a framework for interdisciplinary research towards the development of special purpose digital and analog quantum simulators, and ultimately of scalable universal quantum computers. In this manuscript, recent results and new tools from a quantum science approach to study lattice gauge theories are reviewed. Two new complementary approaches are discussed: first, tensor network methods are presented – a classical simulation approach – applied to the study of lattice gauge theories together with some results on Abelian and non-Abelian lattice gauge theories. Then, recent proposals for the implementation of lattice gauge theory quantum simulators in different quantum hardware are reported, e.g., trapped ions, Rydberg atoms, and superconducting circuits. Finally, the first proof-of-principle trapped ions experimental quantum simulations of the Schwinger model are reviewed. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjd/e2020-100571-8</doi><orcidid>https://orcid.org/0000-0003-4939-084X</orcidid><orcidid>https://orcid.org/0000-0003-4414-6821</orcidid><orcidid>https://orcid.org/0000-0001-5338-4181</orcidid><orcidid>https://orcid.org/0000-0002-0210-7800</orcidid><orcidid>https://orcid.org/0000-0003-0998-9460</orcidid><orcidid>https://orcid.org/0000-0001-6419-6610</orcidid><orcidid>https://orcid.org/0000-0002-2951-7041</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6060
ispartof The European physical journal. D, Atomic, molecular, and optical physics, 2020-08, Vol.74 (8), Article 165
issn 1434-6060
1434-6079
language eng
recordid cdi_proquest_journals_2430393086
source SpringerLink Journals
subjects Analog computers
Applications of Nonlinear Dynamics and Chaos Theory
Atomic
Colloquium
Computer simulation
Condensed matter physics
Gauge theory
Interdisciplinary studies
Molecular
Optical and Plasma Physics
Particle physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum chromodynamics
Quantum computers
Quantum computing
Quantum Information Technology
Quantum phenomena
Quantum Physics
Simulators
Spectroscopy/Spectrometry
Spintronics
Tensors
title Simulating lattice gauge theories within quantum technologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20lattice%20gauge%20theories%20within%20quantum%20technologies&rft.jtitle=The%20European%20physical%20journal.%20D,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Ba%C3%B1uls,%20Mari%20Carmen&rft.date=2020-08-01&rft.volume=74&rft.issue=8&rft.artnum=165&rft.issn=1434-6060&rft.eissn=1434-6079&rft_id=info:doi/10.1140/epjd/e2020-100571-8&rft_dat=%3Cproquest_cross%3E2430393086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430393086&rft_id=info:pmid/&rfr_iscdi=true