Simulating lattice gauge theories within quantum technologies
Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects...
Gespeichert in:
Veröffentlicht in: | The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2020-08, Vol.74 (8), Article 165 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | The European physical journal. D, Atomic, molecular, and optical physics |
container_volume | 74 |
creator | Bañuls, Mari Carmen Blatt, Rainer Catani, Jacopo Celi, Alessio Cirac, Juan Ignacio Dalmonte, Marcello Fallani, Leonardo Jansen, Karl Lewenstein, Maciej Montangero, Simone Muschik, Christine A. Reznik, Benni Rico, Enrique Tagliacozzo, Luca Van Acoleyen, Karel Verstraete, Frank Wiese, Uwe-Jens Wingate, Matthew Zakrzewski, Jakub Zoller, Peter |
description | Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum information science. In this way, lattice gauge theories provide both motivation and a framework for interdisciplinary research towards the development of special purpose digital and analog quantum simulators, and ultimately of scalable universal quantum computers. In this manuscript, recent results and new tools from a quantum science approach to study lattice gauge theories are reviewed. Two new complementary approaches are discussed: first, tensor network methods are presented – a classical simulation approach – applied to the study of lattice gauge theories together with some results on Abelian and non-Abelian lattice gauge theories. Then, recent proposals for the implementation of lattice gauge theory quantum simulators in different quantum hardware are reported, e.g., trapped ions, Rydberg atoms, and superconducting circuits. Finally, the first proof-of-principle trapped ions experimental quantum simulations of the Schwinger model are reviewed.
Graphical abstract |
doi_str_mv | 10.1140/epjd/e2020-100571-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2430393086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430393086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-f7f6105a9a0999798afbd2a91de0ae4d061bed55877e8bd11655a599fb64020b3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwC7hE4hy6jl_xgQOqeElIHICz5SSb1FWbtLYjxL_HJQhunGalnZnVfoRcUrimlMMCd-tmgQUUkFMAoWheHpEZ5YznEpQ-_p0lnJKzENYAUAguZ-Tm1W3HjY2u77Ik0dWYdXbsMIsrHLzDkH24uHJ9th9tH8dtFrFe9cNm6NLunJy0dhPw4kfn5P3-7m35mD-_PDwtb5_zmkkV81a1koKw2oLWWunStlVTWE0bBIu8AUkrbIQolcKyaiiVQlihdVtJnn6q2JxcTb07P-xHDNGsh9H36aQpOAOmGZQyudjkqv0QgsfW7LzbWv9pKJgDJ3PgZL45mYmTKVOKT6mQ3H2H_q_7v9gXq-ttiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430393086</pqid></control><display><type>article</type><title>Simulating lattice gauge theories within quantum technologies</title><source>SpringerLink Journals</source><creator>Bañuls, Mari Carmen ; Blatt, Rainer ; Catani, Jacopo ; Celi, Alessio ; Cirac, Juan Ignacio ; Dalmonte, Marcello ; Fallani, Leonardo ; Jansen, Karl ; Lewenstein, Maciej ; Montangero, Simone ; Muschik, Christine A. ; Reznik, Benni ; Rico, Enrique ; Tagliacozzo, Luca ; Van Acoleyen, Karel ; Verstraete, Frank ; Wiese, Uwe-Jens ; Wingate, Matthew ; Zakrzewski, Jakub ; Zoller, Peter</creator><creatorcontrib>Bañuls, Mari Carmen ; Blatt, Rainer ; Catani, Jacopo ; Celi, Alessio ; Cirac, Juan Ignacio ; Dalmonte, Marcello ; Fallani, Leonardo ; Jansen, Karl ; Lewenstein, Maciej ; Montangero, Simone ; Muschik, Christine A. ; Reznik, Benni ; Rico, Enrique ; Tagliacozzo, Luca ; Van Acoleyen, Karel ; Verstraete, Frank ; Wiese, Uwe-Jens ; Wingate, Matthew ; Zakrzewski, Jakub ; Zoller, Peter</creatorcontrib><description>Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum information science. In this way, lattice gauge theories provide both motivation and a framework for interdisciplinary research towards the development of special purpose digital and analog quantum simulators, and ultimately of scalable universal quantum computers. In this manuscript, recent results and new tools from a quantum science approach to study lattice gauge theories are reviewed. Two new complementary approaches are discussed: first, tensor network methods are presented – a classical simulation approach – applied to the study of lattice gauge theories together with some results on Abelian and non-Abelian lattice gauge theories. Then, recent proposals for the implementation of lattice gauge theory quantum simulators in different quantum hardware are reported, e.g., trapped ions, Rydberg atoms, and superconducting circuits. Finally, the first proof-of-principle trapped ions experimental quantum simulations of the Schwinger model are reviewed.
Graphical abstract</description><identifier>ISSN: 1434-6060</identifier><identifier>EISSN: 1434-6079</identifier><identifier>DOI: 10.1140/epjd/e2020-100571-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analog computers ; Applications of Nonlinear Dynamics and Chaos Theory ; Atomic ; Colloquium ; Computer simulation ; Condensed matter physics ; Gauge theory ; Interdisciplinary studies ; Molecular ; Optical and Plasma Physics ; Particle physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum chromodynamics ; Quantum computers ; Quantum computing ; Quantum Information Technology ; Quantum phenomena ; Quantum Physics ; Simulators ; Spectroscopy/Spectrometry ; Spintronics ; Tensors</subject><ispartof>The European physical journal. D, Atomic, molecular, and optical physics, 2020-08, Vol.74 (8), Article 165</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-f7f6105a9a0999798afbd2a91de0ae4d061bed55877e8bd11655a599fb64020b3</citedby><cites>FETCH-LOGICAL-c367t-f7f6105a9a0999798afbd2a91de0ae4d061bed55877e8bd11655a599fb64020b3</cites><orcidid>0000-0003-4939-084X ; 0000-0003-4414-6821 ; 0000-0001-5338-4181 ; 0000-0002-0210-7800 ; 0000-0003-0998-9460 ; 0000-0001-6419-6610 ; 0000-0002-2951-7041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjd/e2020-100571-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjd/e2020-100571-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bañuls, Mari Carmen</creatorcontrib><creatorcontrib>Blatt, Rainer</creatorcontrib><creatorcontrib>Catani, Jacopo</creatorcontrib><creatorcontrib>Celi, Alessio</creatorcontrib><creatorcontrib>Cirac, Juan Ignacio</creatorcontrib><creatorcontrib>Dalmonte, Marcello</creatorcontrib><creatorcontrib>Fallani, Leonardo</creatorcontrib><creatorcontrib>Jansen, Karl</creatorcontrib><creatorcontrib>Lewenstein, Maciej</creatorcontrib><creatorcontrib>Montangero, Simone</creatorcontrib><creatorcontrib>Muschik, Christine A.</creatorcontrib><creatorcontrib>Reznik, Benni</creatorcontrib><creatorcontrib>Rico, Enrique</creatorcontrib><creatorcontrib>Tagliacozzo, Luca</creatorcontrib><creatorcontrib>Van Acoleyen, Karel</creatorcontrib><creatorcontrib>Verstraete, Frank</creatorcontrib><creatorcontrib>Wiese, Uwe-Jens</creatorcontrib><creatorcontrib>Wingate, Matthew</creatorcontrib><creatorcontrib>Zakrzewski, Jakub</creatorcontrib><creatorcontrib>Zoller, Peter</creatorcontrib><title>Simulating lattice gauge theories within quantum technologies</title><title>The European physical journal. D, Atomic, molecular, and optical physics</title><addtitle>Eur. Phys. J. D</addtitle><description>Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum information science. In this way, lattice gauge theories provide both motivation and a framework for interdisciplinary research towards the development of special purpose digital and analog quantum simulators, and ultimately of scalable universal quantum computers. In this manuscript, recent results and new tools from a quantum science approach to study lattice gauge theories are reviewed. Two new complementary approaches are discussed: first, tensor network methods are presented – a classical simulation approach – applied to the study of lattice gauge theories together with some results on Abelian and non-Abelian lattice gauge theories. Then, recent proposals for the implementation of lattice gauge theory quantum simulators in different quantum hardware are reported, e.g., trapped ions, Rydberg atoms, and superconducting circuits. Finally, the first proof-of-principle trapped ions experimental quantum simulations of the Schwinger model are reviewed.
Graphical abstract</description><subject>Analog computers</subject><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Atomic</subject><subject>Colloquium</subject><subject>Computer simulation</subject><subject>Condensed matter physics</subject><subject>Gauge theory</subject><subject>Interdisciplinary studies</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum chromodynamics</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum Information Technology</subject><subject>Quantum phenomena</subject><subject>Quantum Physics</subject><subject>Simulators</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spintronics</subject><subject>Tensors</subject><issn>1434-6060</issn><issn>1434-6079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwC7hE4hy6jl_xgQOqeElIHICz5SSb1FWbtLYjxL_HJQhunGalnZnVfoRcUrimlMMCd-tmgQUUkFMAoWheHpEZ5YznEpQ-_p0lnJKzENYAUAguZ-Tm1W3HjY2u77Ik0dWYdXbsMIsrHLzDkH24uHJ9th9tH8dtFrFe9cNm6NLunJy0dhPw4kfn5P3-7m35mD-_PDwtb5_zmkkV81a1koKw2oLWWunStlVTWE0bBIu8AUkrbIQolcKyaiiVQlihdVtJnn6q2JxcTb07P-xHDNGsh9H36aQpOAOmGZQyudjkqv0QgsfW7LzbWv9pKJgDJ3PgZL45mYmTKVOKT6mQ3H2H_q_7v9gXq-ttiA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Bañuls, Mari Carmen</creator><creator>Blatt, Rainer</creator><creator>Catani, Jacopo</creator><creator>Celi, Alessio</creator><creator>Cirac, Juan Ignacio</creator><creator>Dalmonte, Marcello</creator><creator>Fallani, Leonardo</creator><creator>Jansen, Karl</creator><creator>Lewenstein, Maciej</creator><creator>Montangero, Simone</creator><creator>Muschik, Christine A.</creator><creator>Reznik, Benni</creator><creator>Rico, Enrique</creator><creator>Tagliacozzo, Luca</creator><creator>Van Acoleyen, Karel</creator><creator>Verstraete, Frank</creator><creator>Wiese, Uwe-Jens</creator><creator>Wingate, Matthew</creator><creator>Zakrzewski, Jakub</creator><creator>Zoller, Peter</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4939-084X</orcidid><orcidid>https://orcid.org/0000-0003-4414-6821</orcidid><orcidid>https://orcid.org/0000-0001-5338-4181</orcidid><orcidid>https://orcid.org/0000-0002-0210-7800</orcidid><orcidid>https://orcid.org/0000-0003-0998-9460</orcidid><orcidid>https://orcid.org/0000-0001-6419-6610</orcidid><orcidid>https://orcid.org/0000-0002-2951-7041</orcidid></search><sort><creationdate>20200801</creationdate><title>Simulating lattice gauge theories within quantum technologies</title><author>Bañuls, Mari Carmen ; Blatt, Rainer ; Catani, Jacopo ; Celi, Alessio ; Cirac, Juan Ignacio ; Dalmonte, Marcello ; Fallani, Leonardo ; Jansen, Karl ; Lewenstein, Maciej ; Montangero, Simone ; Muschik, Christine A. ; Reznik, Benni ; Rico, Enrique ; Tagliacozzo, Luca ; Van Acoleyen, Karel ; Verstraete, Frank ; Wiese, Uwe-Jens ; Wingate, Matthew ; Zakrzewski, Jakub ; Zoller, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-f7f6105a9a0999798afbd2a91de0ae4d061bed55877e8bd11655a599fb64020b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analog computers</topic><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Atomic</topic><topic>Colloquium</topic><topic>Computer simulation</topic><topic>Condensed matter physics</topic><topic>Gauge theory</topic><topic>Interdisciplinary studies</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum chromodynamics</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum Information Technology</topic><topic>Quantum phenomena</topic><topic>Quantum Physics</topic><topic>Simulators</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spintronics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bañuls, Mari Carmen</creatorcontrib><creatorcontrib>Blatt, Rainer</creatorcontrib><creatorcontrib>Catani, Jacopo</creatorcontrib><creatorcontrib>Celi, Alessio</creatorcontrib><creatorcontrib>Cirac, Juan Ignacio</creatorcontrib><creatorcontrib>Dalmonte, Marcello</creatorcontrib><creatorcontrib>Fallani, Leonardo</creatorcontrib><creatorcontrib>Jansen, Karl</creatorcontrib><creatorcontrib>Lewenstein, Maciej</creatorcontrib><creatorcontrib>Montangero, Simone</creatorcontrib><creatorcontrib>Muschik, Christine A.</creatorcontrib><creatorcontrib>Reznik, Benni</creatorcontrib><creatorcontrib>Rico, Enrique</creatorcontrib><creatorcontrib>Tagliacozzo, Luca</creatorcontrib><creatorcontrib>Van Acoleyen, Karel</creatorcontrib><creatorcontrib>Verstraete, Frank</creatorcontrib><creatorcontrib>Wiese, Uwe-Jens</creatorcontrib><creatorcontrib>Wingate, Matthew</creatorcontrib><creatorcontrib>Zakrzewski, Jakub</creatorcontrib><creatorcontrib>Zoller, Peter</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bañuls, Mari Carmen</au><au>Blatt, Rainer</au><au>Catani, Jacopo</au><au>Celi, Alessio</au><au>Cirac, Juan Ignacio</au><au>Dalmonte, Marcello</au><au>Fallani, Leonardo</au><au>Jansen, Karl</au><au>Lewenstein, Maciej</au><au>Montangero, Simone</au><au>Muschik, Christine A.</au><au>Reznik, Benni</au><au>Rico, Enrique</au><au>Tagliacozzo, Luca</au><au>Van Acoleyen, Karel</au><au>Verstraete, Frank</au><au>Wiese, Uwe-Jens</au><au>Wingate, Matthew</au><au>Zakrzewski, Jakub</au><au>Zoller, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating lattice gauge theories within quantum technologies</atitle><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle><stitle>Eur. Phys. J. D</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>74</volume><issue>8</issue><artnum>165</artnum><issn>1434-6060</issn><eissn>1434-6079</eissn><abstract>Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum information science. In this way, lattice gauge theories provide both motivation and a framework for interdisciplinary research towards the development of special purpose digital and analog quantum simulators, and ultimately of scalable universal quantum computers. In this manuscript, recent results and new tools from a quantum science approach to study lattice gauge theories are reviewed. Two new complementary approaches are discussed: first, tensor network methods are presented – a classical simulation approach – applied to the study of lattice gauge theories together with some results on Abelian and non-Abelian lattice gauge theories. Then, recent proposals for the implementation of lattice gauge theory quantum simulators in different quantum hardware are reported, e.g., trapped ions, Rydberg atoms, and superconducting circuits. Finally, the first proof-of-principle trapped ions experimental quantum simulations of the Schwinger model are reviewed.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjd/e2020-100571-8</doi><orcidid>https://orcid.org/0000-0003-4939-084X</orcidid><orcidid>https://orcid.org/0000-0003-4414-6821</orcidid><orcidid>https://orcid.org/0000-0001-5338-4181</orcidid><orcidid>https://orcid.org/0000-0002-0210-7800</orcidid><orcidid>https://orcid.org/0000-0003-0998-9460</orcidid><orcidid>https://orcid.org/0000-0001-6419-6610</orcidid><orcidid>https://orcid.org/0000-0002-2951-7041</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6060 |
ispartof | The European physical journal. D, Atomic, molecular, and optical physics, 2020-08, Vol.74 (8), Article 165 |
issn | 1434-6060 1434-6079 |
language | eng |
recordid | cdi_proquest_journals_2430393086 |
source | SpringerLink Journals |
subjects | Analog computers Applications of Nonlinear Dynamics and Chaos Theory Atomic Colloquium Computer simulation Condensed matter physics Gauge theory Interdisciplinary studies Molecular Optical and Plasma Physics Particle physics Physical Chemistry Physics Physics and Astronomy Quantum chromodynamics Quantum computers Quantum computing Quantum Information Technology Quantum phenomena Quantum Physics Simulators Spectroscopy/Spectrometry Spintronics Tensors |
title | Simulating lattice gauge theories within quantum technologies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20lattice%20gauge%20theories%20within%20quantum%20technologies&rft.jtitle=The%20European%20physical%20journal.%20D,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Ba%C3%B1uls,%20Mari%20Carmen&rft.date=2020-08-01&rft.volume=74&rft.issue=8&rft.artnum=165&rft.issn=1434-6060&rft.eissn=1434-6079&rft_id=info:doi/10.1140/epjd/e2020-100571-8&rft_dat=%3Cproquest_cross%3E2430393086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430393086&rft_id=info:pmid/&rfr_iscdi=true |