Explicit Result on Equivalence of Rational Quadratic Forms Avoiding Primes

Given a pair of regular quadratic forms over \(\mathbb{Q}\) which are in the same genus and a finite set of primes \(P\), we show that there is an effective way to determine a rational equivalence between these two quadratic forms which are integral over every prime in \(P\). This answers one of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-08
Hauptverfasser: Chan, Wai Kiu, Gao, Haochen, Li, Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chan, Wai Kiu
Gao, Haochen
Li, Han
description Given a pair of regular quadratic forms over \(\mathbb{Q}\) which are in the same genus and a finite set of primes \(P\), we show that there is an effective way to determine a rational equivalence between these two quadratic forms which are integral over every prime in \(P\). This answers one of the principal questions posed by Conway and Sloane in their book {\em Sphere packings, lattices and groups}, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol 290, Springer-Verlag, New York, 1999; page 402.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2430270435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430270435</sourcerecordid><originalsourceid>FETCH-proquest_journals_24302704353</originalsourceid><addsrcrecordid>eNqNjEELgjAYQEcQJOV_-KCzsDbNrhFKdCrpLkOnTOam-zbp5-ehH9Dp8eDxNiRinJ-SS8rYjsSIA6WUnXOWZTwij-IzadUoD5XEoD1YA8Uc1CK0NI0E20ElvLJGaHgF0bpVGiitGxGui1WtMj08nRolHsi2Expl_OOeHMvifbsnk7NzkOjrwQa3jrBmKacspynP-H_VF7tIPJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430270435</pqid></control><display><type>article</type><title>Explicit Result on Equivalence of Rational Quadratic Forms Avoiding Primes</title><source>Free E- Journals</source><creator>Chan, Wai Kiu ; Gao, Haochen ; Li, Han</creator><creatorcontrib>Chan, Wai Kiu ; Gao, Haochen ; Li, Han</creatorcontrib><description>Given a pair of regular quadratic forms over \(\mathbb{Q}\) which are in the same genus and a finite set of primes \(P\), we show that there is an effective way to determine a rational equivalence between these two quadratic forms which are integral over every prime in \(P\). This answers one of the principal questions posed by Conway and Sloane in their book {\em Sphere packings, lattices and groups}, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol 290, Springer-Verlag, New York, 1999; page 402.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Equivalence ; Quadratic forms</subject><ispartof>arXiv.org, 2020-08</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Chan, Wai Kiu</creatorcontrib><creatorcontrib>Gao, Haochen</creatorcontrib><creatorcontrib>Li, Han</creatorcontrib><title>Explicit Result on Equivalence of Rational Quadratic Forms Avoiding Primes</title><title>arXiv.org</title><description>Given a pair of regular quadratic forms over \(\mathbb{Q}\) which are in the same genus and a finite set of primes \(P\), we show that there is an effective way to determine a rational equivalence between these two quadratic forms which are integral over every prime in \(P\). This answers one of the principal questions posed by Conway and Sloane in their book {\em Sphere packings, lattices and groups}, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol 290, Springer-Verlag, New York, 1999; page 402.</description><subject>Equivalence</subject><subject>Quadratic forms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEELgjAYQEcQJOV_-KCzsDbNrhFKdCrpLkOnTOam-zbp5-ehH9Dp8eDxNiRinJ-SS8rYjsSIA6WUnXOWZTwij-IzadUoD5XEoD1YA8Uc1CK0NI0E20ElvLJGaHgF0bpVGiitGxGui1WtMj08nRolHsi2Expl_OOeHMvifbsnk7NzkOjrwQa3jrBmKacspynP-H_VF7tIPJA</recordid><startdate>20200803</startdate><enddate>20200803</enddate><creator>Chan, Wai Kiu</creator><creator>Gao, Haochen</creator><creator>Li, Han</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200803</creationdate><title>Explicit Result on Equivalence of Rational Quadratic Forms Avoiding Primes</title><author>Chan, Wai Kiu ; Gao, Haochen ; Li, Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24302704353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Equivalence</topic><topic>Quadratic forms</topic><toplevel>online_resources</toplevel><creatorcontrib>Chan, Wai Kiu</creatorcontrib><creatorcontrib>Gao, Haochen</creatorcontrib><creatorcontrib>Li, Han</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Wai Kiu</au><au>Gao, Haochen</au><au>Li, Han</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Explicit Result on Equivalence of Rational Quadratic Forms Avoiding Primes</atitle><jtitle>arXiv.org</jtitle><date>2020-08-03</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Given a pair of regular quadratic forms over \(\mathbb{Q}\) which are in the same genus and a finite set of primes \(P\), we show that there is an effective way to determine a rational equivalence between these two quadratic forms which are integral over every prime in \(P\). This answers one of the principal questions posed by Conway and Sloane in their book {\em Sphere packings, lattices and groups}, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol 290, Springer-Verlag, New York, 1999; page 402.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2430270435
source Free E- Journals
subjects Equivalence
Quadratic forms
title Explicit Result on Equivalence of Rational Quadratic Forms Avoiding Primes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Explicit%20Result%20on%20Equivalence%20of%20Rational%20Quadratic%20Forms%20Avoiding%20Primes&rft.jtitle=arXiv.org&rft.au=Chan,%20Wai%20Kiu&rft.date=2020-08-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2430270435%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430270435&rft_id=info:pmid/&rfr_iscdi=true