Dynamical Instabilities in Systems of Multiple Short-period Planets Are Likely Driven by Secular Chaos: A Case Study of Kepler-102
We investigated the dynamical stability of high-multiplicity Kepler and K2 planetary systems. Our numerical simulations find instabilities in ∼20% of the cases on a wide range of timescales (up to 5 × 109 orbits) and over an unexpectedly wide range of initial dynamical spacings. To identify the trig...
Gespeichert in:
Veröffentlicht in: | The Astronomical journal 2020-09, Vol.160 (3), p.98 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 98 |
container_title | The Astronomical journal |
container_volume | 160 |
creator | Volk, Kathryn Malhotra, Renu |
description | We investigated the dynamical stability of high-multiplicity Kepler and K2 planetary systems. Our numerical simulations find instabilities in ∼20% of the cases on a wide range of timescales (up to 5 × 109 orbits) and over an unexpectedly wide range of initial dynamical spacings. To identify the triggers of long-term instability in multiplanet systems, we investigated in detail the five-planet Kepler-102 system. Despite having several near-resonant period ratios, we find that mean-motion resonances are unlikely to directly cause instability for plausible planet masses in this system. Instead, we find strong evidence that slow inward transfer of angular momentum deficit (AMD) via secular chaos excites the eccentricity of the innermost planet, Kepler-102 b, eventually leading to planet-planet collisions in ∼80% of Kepler-102 simulations. Kepler-102 b likely needs a mass 0.1 M⊕, hence a bulk density exceeding about half Earth's, in order to avoid dynamical instability. To investigate the role of secular chaos in our wider set of simulations, we characterize each planetary system's AMD evolution with a "spectral fraction" calculated from the power spectrum of short integrations (∼5 × 106 orbits). We find that small spectral fractions ( 0.01) are strongly associated with dynamical stability on long timescales (5 × 109 orbits) and that the median time to instability decreases with increasing spectral fraction. Our results support the hypothesis that secular chaos is the driver of instabilities in many nonresonant multiplanet systems and also demonstrate that the spectral analysis method is an efficient numerical tool to diagnose long-term (in)stability of multiplanet systems from short simulations. |
doi_str_mv | 10.3847/1538-3881/aba0b0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2430157074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467619813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-8ffa8b2395e62f2f0df6a4fe9c9c0aba6e71ae2b18e91f0330559e345fdb816f3</originalsourceid><addsrcrecordid>eNp9ks2L1DAUwIso7rh69ySBvXiwbtK0TephYZj1Y3FEYfQc0vTFydg2NUkXevUvN6VrVRBPgeT3fi_vI0meEvyS8pxdkoLylHJOLmUtcY3vJZv16n6ywRjnaZkV5VnyyPsTxoRwnD9MzijNGGU53SQ_rqdedkbJFt30PsjatCYY8Mj06DD5AJ1HVqMPYxvM0AI6HK0L6QDO2AZ9amUPwaOtA7Q336Cd0LUzt9CjekIHUGMrHdodpfWv0BbtpI_xYWym2fgeos6lBGePkwdath6e3J3nyZc3rz_v3qX7j29vdtt9qgrCQsq1lrzOaFVAmelM40aXMtdQqUrhWH4JjEjIasKhIhpTiouiApoXuqk5KTU9T64W7zDWHTQK-uBkKwZnOukmYaURf7_05ii-2lvBGK5YUUXBxSKwPhjhlQmgjsr2PaggMooJpWUeqed3aZz9PoIPojNeQTv3yo5eZHnJSlLxSK_CFT3Z0fWxCZGKvoJhNgvxQilnvXeg1y8TLOY1EPPMxTxzsaxBDHn2Z6lrwK-5R-DFAhg7_E76H9_FP3B5EqSMIaLiYmg0_QkXKMil</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430157074</pqid></control><display><type>article</type><title>Dynamical Instabilities in Systems of Multiple Short-period Planets Are Likely Driven by Secular Chaos: A Case Study of Kepler-102</title><source>IOP Publishing Free Content</source><creator>Volk, Kathryn ; Malhotra, Renu</creator><creatorcontrib>Volk, Kathryn ; Malhotra, Renu</creatorcontrib><description>We investigated the dynamical stability of high-multiplicity Kepler and K2 planetary systems. Our numerical simulations find instabilities in ∼20% of the cases on a wide range of timescales (up to 5 × 109 orbits) and over an unexpectedly wide range of initial dynamical spacings. To identify the triggers of long-term instability in multiplanet systems, we investigated in detail the five-planet Kepler-102 system. Despite having several near-resonant period ratios, we find that mean-motion resonances are unlikely to directly cause instability for plausible planet masses in this system. Instead, we find strong evidence that slow inward transfer of angular momentum deficit (AMD) via secular chaos excites the eccentricity of the innermost planet, Kepler-102 b, eventually leading to planet-planet collisions in ∼80% of Kepler-102 simulations. Kepler-102 b likely needs a mass 0.1 M⊕, hence a bulk density exceeding about half Earth's, in order to avoid dynamical instability. To investigate the role of secular chaos in our wider set of simulations, we characterize each planetary system's AMD evolution with a "spectral fraction" calculated from the power spectrum of short integrations (∼5 × 106 orbits). We find that small spectral fractions ( 0.01) are strongly associated with dynamical stability on long timescales (5 × 109 orbits) and that the median time to instability decreases with increasing spectral fraction. Our results support the hypothesis that secular chaos is the driver of instabilities in many nonresonant multiplanet systems and also demonstrate that the spectral analysis method is an efficient numerical tool to diagnose long-term (in)stability of multiplanet systems from short simulations.</description><identifier>ISSN: 0004-6256</identifier><identifier>ISSN: 1538-3881</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/aba0b0</identifier><identifier>PMID: 33273743</identifier><language>eng</language><publisher>United States: The American Astronomical Society</publisher><subject>ANGULAR MOMENTUM ; Astronomy ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Bulk density ; Computer simulation ; COMPUTERIZED SIMULATION ; Dynamic stability ; Exoplanet dynamics ; Exoplanet systems ; Exoplanets ; INSTABILITY ; MASS ; Motion stability ; MULTIPLICITY ; Numerical simulations ; Orbital evolution ; Orbital resonances (celestial mechanics) ; ORBITS ; PERIODICITY ; Planetary evolution ; Planetary systems ; PLANETS ; RESONANCE ; Simulation ; SPECTRA ; Spectral analysis ; Spectrum analysis ; STABILITY</subject><ispartof>The Astronomical journal, 2020-09, Vol.160 (3), p.98</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Sep 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-8ffa8b2395e62f2f0df6a4fe9c9c0aba6e71ae2b18e91f0330559e345fdb816f3</citedby><cites>FETCH-LOGICAL-c517t-8ffa8b2395e62f2f0df6a4fe9c9c0aba6e71ae2b18e91f0330559e345fdb816f3</cites><orcidid>0000-0002-1226-3305 ; 0000-0001-8736-236X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/aba0b0/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,777,781,882,27905,27906,38849,38871,53821,53848</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/aba0b0$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33273743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/23013364$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Volk, Kathryn</creatorcontrib><creatorcontrib>Malhotra, Renu</creatorcontrib><title>Dynamical Instabilities in Systems of Multiple Short-period Planets Are Likely Driven by Secular Chaos: A Case Study of Kepler-102</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>We investigated the dynamical stability of high-multiplicity Kepler and K2 planetary systems. Our numerical simulations find instabilities in ∼20% of the cases on a wide range of timescales (up to 5 × 109 orbits) and over an unexpectedly wide range of initial dynamical spacings. To identify the triggers of long-term instability in multiplanet systems, we investigated in detail the five-planet Kepler-102 system. Despite having several near-resonant period ratios, we find that mean-motion resonances are unlikely to directly cause instability for plausible planet masses in this system. Instead, we find strong evidence that slow inward transfer of angular momentum deficit (AMD) via secular chaos excites the eccentricity of the innermost planet, Kepler-102 b, eventually leading to planet-planet collisions in ∼80% of Kepler-102 simulations. Kepler-102 b likely needs a mass 0.1 M⊕, hence a bulk density exceeding about half Earth's, in order to avoid dynamical instability. To investigate the role of secular chaos in our wider set of simulations, we characterize each planetary system's AMD evolution with a "spectral fraction" calculated from the power spectrum of short integrations (∼5 × 106 orbits). We find that small spectral fractions ( 0.01) are strongly associated with dynamical stability on long timescales (5 × 109 orbits) and that the median time to instability decreases with increasing spectral fraction. Our results support the hypothesis that secular chaos is the driver of instabilities in many nonresonant multiplanet systems and also demonstrate that the spectral analysis method is an efficient numerical tool to diagnose long-term (in)stability of multiplanet systems from short simulations.</description><subject>ANGULAR MOMENTUM</subject><subject>Astronomy</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Bulk density</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Dynamic stability</subject><subject>Exoplanet dynamics</subject><subject>Exoplanet systems</subject><subject>Exoplanets</subject><subject>INSTABILITY</subject><subject>MASS</subject><subject>Motion stability</subject><subject>MULTIPLICITY</subject><subject>Numerical simulations</subject><subject>Orbital evolution</subject><subject>Orbital resonances (celestial mechanics)</subject><subject>ORBITS</subject><subject>PERIODICITY</subject><subject>Planetary evolution</subject><subject>Planetary systems</subject><subject>PLANETS</subject><subject>RESONANCE</subject><subject>Simulation</subject><subject>SPECTRA</subject><subject>Spectral analysis</subject><subject>Spectrum analysis</subject><subject>STABILITY</subject><issn>0004-6256</issn><issn>1538-3881</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9ks2L1DAUwIso7rh69ySBvXiwbtK0TephYZj1Y3FEYfQc0vTFydg2NUkXevUvN6VrVRBPgeT3fi_vI0meEvyS8pxdkoLylHJOLmUtcY3vJZv16n6ywRjnaZkV5VnyyPsTxoRwnD9MzijNGGU53SQ_rqdedkbJFt30PsjatCYY8Mj06DD5AJ1HVqMPYxvM0AI6HK0L6QDO2AZ9amUPwaOtA7Q336Cd0LUzt9CjekIHUGMrHdodpfWv0BbtpI_xYWym2fgeos6lBGePkwdath6e3J3nyZc3rz_v3qX7j29vdtt9qgrCQsq1lrzOaFVAmelM40aXMtdQqUrhWH4JjEjIasKhIhpTiouiApoXuqk5KTU9T64W7zDWHTQK-uBkKwZnOukmYaURf7_05ii-2lvBGK5YUUXBxSKwPhjhlQmgjsr2PaggMooJpWUeqed3aZz9PoIPojNeQTv3yo5eZHnJSlLxSK_CFT3Z0fWxCZGKvoJhNgvxQilnvXeg1y8TLOY1EPPMxTxzsaxBDHn2Z6lrwK-5R-DFAhg7_E76H9_FP3B5EqSMIaLiYmg0_QkXKMil</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Volk, Kathryn</creator><creator>Malhotra, Renu</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1226-3305</orcidid><orcidid>https://orcid.org/0000-0001-8736-236X</orcidid></search><sort><creationdate>20200901</creationdate><title>Dynamical Instabilities in Systems of Multiple Short-period Planets Are Likely Driven by Secular Chaos: A Case Study of Kepler-102</title><author>Volk, Kathryn ; Malhotra, Renu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-8ffa8b2395e62f2f0df6a4fe9c9c0aba6e71ae2b18e91f0330559e345fdb816f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ANGULAR MOMENTUM</topic><topic>Astronomy</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Bulk density</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Dynamic stability</topic><topic>Exoplanet dynamics</topic><topic>Exoplanet systems</topic><topic>Exoplanets</topic><topic>INSTABILITY</topic><topic>MASS</topic><topic>Motion stability</topic><topic>MULTIPLICITY</topic><topic>Numerical simulations</topic><topic>Orbital evolution</topic><topic>Orbital resonances (celestial mechanics)</topic><topic>ORBITS</topic><topic>PERIODICITY</topic><topic>Planetary evolution</topic><topic>Planetary systems</topic><topic>PLANETS</topic><topic>RESONANCE</topic><topic>Simulation</topic><topic>SPECTRA</topic><topic>Spectral analysis</topic><topic>Spectrum analysis</topic><topic>STABILITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volk, Kathryn</creatorcontrib><creatorcontrib>Malhotra, Renu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Volk, Kathryn</au><au>Malhotra, Renu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical Instabilities in Systems of Multiple Short-period Planets Are Likely Driven by Secular Chaos: A Case Study of Kepler-102</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>160</volume><issue>3</issue><spage>98</spage><pages>98-</pages><issn>0004-6256</issn><issn>1538-3881</issn><eissn>1538-3881</eissn><abstract>We investigated the dynamical stability of high-multiplicity Kepler and K2 planetary systems. Our numerical simulations find instabilities in ∼20% of the cases on a wide range of timescales (up to 5 × 109 orbits) and over an unexpectedly wide range of initial dynamical spacings. To identify the triggers of long-term instability in multiplanet systems, we investigated in detail the five-planet Kepler-102 system. Despite having several near-resonant period ratios, we find that mean-motion resonances are unlikely to directly cause instability for plausible planet masses in this system. Instead, we find strong evidence that slow inward transfer of angular momentum deficit (AMD) via secular chaos excites the eccentricity of the innermost planet, Kepler-102 b, eventually leading to planet-planet collisions in ∼80% of Kepler-102 simulations. Kepler-102 b likely needs a mass 0.1 M⊕, hence a bulk density exceeding about half Earth's, in order to avoid dynamical instability. To investigate the role of secular chaos in our wider set of simulations, we characterize each planetary system's AMD evolution with a "spectral fraction" calculated from the power spectrum of short integrations (∼5 × 106 orbits). We find that small spectral fractions ( 0.01) are strongly associated with dynamical stability on long timescales (5 × 109 orbits) and that the median time to instability decreases with increasing spectral fraction. Our results support the hypothesis that secular chaos is the driver of instabilities in many nonresonant multiplanet systems and also demonstrate that the spectral analysis method is an efficient numerical tool to diagnose long-term (in)stability of multiplanet systems from short simulations.</abstract><cop>United States</cop><pub>The American Astronomical Society</pub><pmid>33273743</pmid><doi>10.3847/1538-3881/aba0b0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1226-3305</orcidid><orcidid>https://orcid.org/0000-0001-8736-236X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-6256 |
ispartof | The Astronomical journal, 2020-09, Vol.160 (3), p.98 |
issn | 0004-6256 1538-3881 1538-3881 |
language | eng |
recordid | cdi_proquest_journals_2430157074 |
source | IOP Publishing Free Content |
subjects | ANGULAR MOMENTUM Astronomy ASTROPHYSICS, COSMOLOGY AND ASTRONOMY Bulk density Computer simulation COMPUTERIZED SIMULATION Dynamic stability Exoplanet dynamics Exoplanet systems Exoplanets INSTABILITY MASS Motion stability MULTIPLICITY Numerical simulations Orbital evolution Orbital resonances (celestial mechanics) ORBITS PERIODICITY Planetary evolution Planetary systems PLANETS RESONANCE Simulation SPECTRA Spectral analysis Spectrum analysis STABILITY |
title | Dynamical Instabilities in Systems of Multiple Short-period Planets Are Likely Driven by Secular Chaos: A Case Study of Kepler-102 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20Instabilities%20in%20Systems%20of%20Multiple%20Short-period%20Planets%20Are%20Likely%20Driven%20by%20Secular%20Chaos:%20A%20Case%20Study%20of%20Kepler-102&rft.jtitle=The%20Astronomical%20journal&rft.au=Volk,%20Kathryn&rft.date=2020-09-01&rft.volume=160&rft.issue=3&rft.spage=98&rft.pages=98-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/aba0b0&rft_dat=%3Cproquest_O3W%3E2467619813%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430157074&rft_id=info:pmid/33273743&rfr_iscdi=true |