Edge photocurrent driven by terahertz electric field in bilayer graphene
We report on the observation of edge electric currents excited in bilayer graphene by terahertz laser radiation. We show that the current generation belongs to the class of second order in electric field phenomena and is controlled by the orientation of the THz electric field polarization plane. Add...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2020-07, Vol.102 (4), p.1, Article 045406 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 102 |
creator | Candussio, S. Durnev, M. V. Tarasenko, S. A. Yin, J. Keil, J. Yang, Y. Son, S.-K. Mishchenko, A. Plank, H. Bel'kov, V. V. Slizovskiy, S. Fal'ko, V. Ganichev, S. D. |
description | We report on the observation of edge electric currents excited in bilayer graphene by terahertz laser radiation. We show that the current generation belongs to the class of second order in electric field phenomena and is controlled by the orientation of the THz electric field polarization plane. Additionally, applying a small magnetic field normal to the graphene plane leads to a phase shift in the polarization dependence. With increasing the magnetic field strength, the current starts to exhibit 1/B-magneto-oscillations with a period consistent with that of the Shubnikov–de Haas effect and amplitude by an order of magnitude larger as compared to the current at zero magnetic field measured under the same conditions. The microscopic theory developed shows that the current is formed in the edge's vicinity limited by the mean-free path of carriers and the screening length of the high-frequency electric field. The current originates from the alignment of the free carrier momenta and dynamic accumulation of charge at the edges, where the P-symmetry is naturally broken. The observed magneto-oscillations of the photocurrent are attributed to the formation of Landau levels. |
doi_str_mv | 10.1103/PhysRevB.102.045406 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2430114258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430114258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-b3a6ac8b491d133e7f2791f695f177f533a6d2bc66537bf03b24fc7e74cd703a3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOOY-gS8Bnztv_jRZHnVMJwwU0eeSpjdrR21rmg7qp7cy9eke7jmcAz9CrhksGQNx-1KO_Sse75cM-BJkKkGdkRmXyiTGKHP-r1O4JIu-PwAAU2A0mBnZboo90q5sY-uGELCJtAjVERuajzRisCWG-EWxRhdD5aivsC5oNdlVbUcMdB9sV2KDV-TC27rHxe-dk_eHzdt6m-yeH5_Wd7vECc5jkgurrFvl0rCCCYHac22YVyb1TGufiskveO6USoXOPYicS-80aukKDcKKObk59Xah_Rywj9mhHUIzTWZcCmBM8nQ1pcQp5ULb9wF91oXqw4YxY5D9UMv-qE0Pnp2oiW-7pWG1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430114258</pqid></control><display><type>article</type><title>Edge photocurrent driven by terahertz electric field in bilayer graphene</title><source>American Physical Society Journals</source><creator>Candussio, S. ; Durnev, M. V. ; Tarasenko, S. A. ; Yin, J. ; Keil, J. ; Yang, Y. ; Son, S.-K. ; Mishchenko, A. ; Plank, H. ; Bel'kov, V. V. ; Slizovskiy, S. ; Fal'ko, V. ; Ganichev, S. D.</creator><creatorcontrib>Candussio, S. ; Durnev, M. V. ; Tarasenko, S. A. ; Yin, J. ; Keil, J. ; Yang, Y. ; Son, S.-K. ; Mishchenko, A. ; Plank, H. ; Bel'kov, V. V. ; Slizovskiy, S. ; Fal'ko, V. ; Ganichev, S. D.</creatorcontrib><description>We report on the observation of edge electric currents excited in bilayer graphene by terahertz laser radiation. We show that the current generation belongs to the class of second order in electric field phenomena and is controlled by the orientation of the THz electric field polarization plane. Additionally, applying a small magnetic field normal to the graphene plane leads to a phase shift in the polarization dependence. With increasing the magnetic field strength, the current starts to exhibit 1/B-magneto-oscillations with a period consistent with that of the Shubnikov–de Haas effect and amplitude by an order of magnitude larger as compared to the current at zero magnetic field measured under the same conditions. The microscopic theory developed shows that the current is formed in the edge's vicinity limited by the mean-free path of carriers and the screening length of the high-frequency electric field. The current originates from the alignment of the free carrier momenta and dynamic accumulation of charge at the edges, where the P-symmetry is naturally broken. The observed magneto-oscillations of the photocurrent are attributed to the formation of Landau levels.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.045406</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Bilayers ; Electric fields ; Field strength ; Graphene ; Magnetic fields ; Oscillations ; Photoelectric effect ; Photoelectric emission ; Polarization ; Terahertz frequencies</subject><ispartof>Physical review. B, 2020-07, Vol.102 (4), p.1, Article 045406</ispartof><rights>Copyright American Physical Society Jul 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-b3a6ac8b491d133e7f2791f695f177f533a6d2bc66537bf03b24fc7e74cd703a3</citedby><cites>FETCH-LOGICAL-c322t-b3a6ac8b491d133e7f2791f695f177f533a6d2bc66537bf03b24fc7e74cd703a3</cites><orcidid>0000-0002-4335-8518 ; 0000-0003-0131-0775 ; 0000-0002-0427-5664 ; 0000-0002-6507-2449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Candussio, S.</creatorcontrib><creatorcontrib>Durnev, M. V.</creatorcontrib><creatorcontrib>Tarasenko, S. A.</creatorcontrib><creatorcontrib>Yin, J.</creatorcontrib><creatorcontrib>Keil, J.</creatorcontrib><creatorcontrib>Yang, Y.</creatorcontrib><creatorcontrib>Son, S.-K.</creatorcontrib><creatorcontrib>Mishchenko, A.</creatorcontrib><creatorcontrib>Plank, H.</creatorcontrib><creatorcontrib>Bel'kov, V. V.</creatorcontrib><creatorcontrib>Slizovskiy, S.</creatorcontrib><creatorcontrib>Fal'ko, V.</creatorcontrib><creatorcontrib>Ganichev, S. D.</creatorcontrib><title>Edge photocurrent driven by terahertz electric field in bilayer graphene</title><title>Physical review. B</title><description>We report on the observation of edge electric currents excited in bilayer graphene by terahertz laser radiation. We show that the current generation belongs to the class of second order in electric field phenomena and is controlled by the orientation of the THz electric field polarization plane. Additionally, applying a small magnetic field normal to the graphene plane leads to a phase shift in the polarization dependence. With increasing the magnetic field strength, the current starts to exhibit 1/B-magneto-oscillations with a period consistent with that of the Shubnikov–de Haas effect and amplitude by an order of magnitude larger as compared to the current at zero magnetic field measured under the same conditions. The microscopic theory developed shows that the current is formed in the edge's vicinity limited by the mean-free path of carriers and the screening length of the high-frequency electric field. The current originates from the alignment of the free carrier momenta and dynamic accumulation of charge at the edges, where the P-symmetry is naturally broken. The observed magneto-oscillations of the photocurrent are attributed to the formation of Landau levels.</description><subject>Bilayers</subject><subject>Electric fields</subject><subject>Field strength</subject><subject>Graphene</subject><subject>Magnetic fields</subject><subject>Oscillations</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Polarization</subject><subject>Terahertz frequencies</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOOY-gS8Bnztv_jRZHnVMJwwU0eeSpjdrR21rmg7qp7cy9eke7jmcAz9CrhksGQNx-1KO_Sse75cM-BJkKkGdkRmXyiTGKHP-r1O4JIu-PwAAU2A0mBnZboo90q5sY-uGELCJtAjVERuajzRisCWG-EWxRhdD5aivsC5oNdlVbUcMdB9sV2KDV-TC27rHxe-dk_eHzdt6m-yeH5_Wd7vECc5jkgurrFvl0rCCCYHac22YVyb1TGufiskveO6USoXOPYicS-80aukKDcKKObk59Xah_Rywj9mhHUIzTWZcCmBM8nQ1pcQp5ULb9wF91oXqw4YxY5D9UMv-qE0Pnp2oiW-7pWG1</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Candussio, S.</creator><creator>Durnev, M. V.</creator><creator>Tarasenko, S. A.</creator><creator>Yin, J.</creator><creator>Keil, J.</creator><creator>Yang, Y.</creator><creator>Son, S.-K.</creator><creator>Mishchenko, A.</creator><creator>Plank, H.</creator><creator>Bel'kov, V. V.</creator><creator>Slizovskiy, S.</creator><creator>Fal'ko, V.</creator><creator>Ganichev, S. D.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4335-8518</orcidid><orcidid>https://orcid.org/0000-0003-0131-0775</orcidid><orcidid>https://orcid.org/0000-0002-0427-5664</orcidid><orcidid>https://orcid.org/0000-0002-6507-2449</orcidid></search><sort><creationdate>20200715</creationdate><title>Edge photocurrent driven by terahertz electric field in bilayer graphene</title><author>Candussio, S. ; Durnev, M. V. ; Tarasenko, S. A. ; Yin, J. ; Keil, J. ; Yang, Y. ; Son, S.-K. ; Mishchenko, A. ; Plank, H. ; Bel'kov, V. V. ; Slizovskiy, S. ; Fal'ko, V. ; Ganichev, S. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-b3a6ac8b491d133e7f2791f695f177f533a6d2bc66537bf03b24fc7e74cd703a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bilayers</topic><topic>Electric fields</topic><topic>Field strength</topic><topic>Graphene</topic><topic>Magnetic fields</topic><topic>Oscillations</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Polarization</topic><topic>Terahertz frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Candussio, S.</creatorcontrib><creatorcontrib>Durnev, M. V.</creatorcontrib><creatorcontrib>Tarasenko, S. A.</creatorcontrib><creatorcontrib>Yin, J.</creatorcontrib><creatorcontrib>Keil, J.</creatorcontrib><creatorcontrib>Yang, Y.</creatorcontrib><creatorcontrib>Son, S.-K.</creatorcontrib><creatorcontrib>Mishchenko, A.</creatorcontrib><creatorcontrib>Plank, H.</creatorcontrib><creatorcontrib>Bel'kov, V. V.</creatorcontrib><creatorcontrib>Slizovskiy, S.</creatorcontrib><creatorcontrib>Fal'ko, V.</creatorcontrib><creatorcontrib>Ganichev, S. D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Candussio, S.</au><au>Durnev, M. V.</au><au>Tarasenko, S. A.</au><au>Yin, J.</au><au>Keil, J.</au><au>Yang, Y.</au><au>Son, S.-K.</au><au>Mishchenko, A.</au><au>Plank, H.</au><au>Bel'kov, V. V.</au><au>Slizovskiy, S.</au><au>Fal'ko, V.</au><au>Ganichev, S. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge photocurrent driven by terahertz electric field in bilayer graphene</atitle><jtitle>Physical review. B</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>102</volume><issue>4</issue><spage>1</spage><pages>1-</pages><artnum>045406</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We report on the observation of edge electric currents excited in bilayer graphene by terahertz laser radiation. We show that the current generation belongs to the class of second order in electric field phenomena and is controlled by the orientation of the THz electric field polarization plane. Additionally, applying a small magnetic field normal to the graphene plane leads to a phase shift in the polarization dependence. With increasing the magnetic field strength, the current starts to exhibit 1/B-magneto-oscillations with a period consistent with that of the Shubnikov–de Haas effect and amplitude by an order of magnitude larger as compared to the current at zero magnetic field measured under the same conditions. The microscopic theory developed shows that the current is formed in the edge's vicinity limited by the mean-free path of carriers and the screening length of the high-frequency electric field. The current originates from the alignment of the free carrier momenta and dynamic accumulation of charge at the edges, where the P-symmetry is naturally broken. The observed magneto-oscillations of the photocurrent are attributed to the formation of Landau levels.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.102.045406</doi><orcidid>https://orcid.org/0000-0002-4335-8518</orcidid><orcidid>https://orcid.org/0000-0003-0131-0775</orcidid><orcidid>https://orcid.org/0000-0002-0427-5664</orcidid><orcidid>https://orcid.org/0000-0002-6507-2449</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2020-07, Vol.102 (4), p.1, Article 045406 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2430114258 |
source | American Physical Society Journals |
subjects | Bilayers Electric fields Field strength Graphene Magnetic fields Oscillations Photoelectric effect Photoelectric emission Polarization Terahertz frequencies |
title | Edge photocurrent driven by terahertz electric field in bilayer graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T06%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20photocurrent%20driven%20by%20terahertz%20electric%20field%20in%20bilayer%20graphene&rft.jtitle=Physical%20review.%20B&rft.au=Candussio,%20S.&rft.date=2020-07-15&rft.volume=102&rft.issue=4&rft.spage=1&rft.pages=1-&rft.artnum=045406&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.045406&rft_dat=%3Cproquest_cross%3E2430114258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430114258&rft_id=info:pmid/&rfr_iscdi=true |