Edge photocurrent driven by terahertz electric field in bilayer graphene

We report on the observation of edge electric currents excited in bilayer graphene by terahertz laser radiation. We show that the current generation belongs to the class of second order in electric field phenomena and is controlled by the orientation of the THz electric field polarization plane. Add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-07, Vol.102 (4), p.1, Article 045406
Hauptverfasser: Candussio, S., Durnev, M. V., Tarasenko, S. A., Yin, J., Keil, J., Yang, Y., Son, S.-K., Mishchenko, A., Plank, H., Bel'kov, V. V., Slizovskiy, S., Fal'ko, V., Ganichev, S. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1
container_title Physical review. B
container_volume 102
creator Candussio, S.
Durnev, M. V.
Tarasenko, S. A.
Yin, J.
Keil, J.
Yang, Y.
Son, S.-K.
Mishchenko, A.
Plank, H.
Bel'kov, V. V.
Slizovskiy, S.
Fal'ko, V.
Ganichev, S. D.
description We report on the observation of edge electric currents excited in bilayer graphene by terahertz laser radiation. We show that the current generation belongs to the class of second order in electric field phenomena and is controlled by the orientation of the THz electric field polarization plane. Additionally, applying a small magnetic field normal to the graphene plane leads to a phase shift in the polarization dependence. With increasing the magnetic field strength, the current starts to exhibit 1/B-magneto-oscillations with a period consistent with that of the Shubnikov–de Haas effect and amplitude by an order of magnitude larger as compared to the current at zero magnetic field measured under the same conditions. The microscopic theory developed shows that the current is formed in the edge's vicinity limited by the mean-free path of carriers and the screening length of the high-frequency electric field. The current originates from the alignment of the free carrier momenta and dynamic accumulation of charge at the edges, where the P-symmetry is naturally broken. The observed magneto-oscillations of the photocurrent are attributed to the formation of Landau levels.
doi_str_mv 10.1103/PhysRevB.102.045406
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2430114258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430114258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-b3a6ac8b491d133e7f2791f695f177f533a6d2bc66537bf03b24fc7e74cd703a3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOOY-gS8Bnztv_jRZHnVMJwwU0eeSpjdrR21rmg7qp7cy9eke7jmcAz9CrhksGQNx-1KO_Sse75cM-BJkKkGdkRmXyiTGKHP-r1O4JIu-PwAAU2A0mBnZboo90q5sY-uGELCJtAjVERuajzRisCWG-EWxRhdD5aivsC5oNdlVbUcMdB9sV2KDV-TC27rHxe-dk_eHzdt6m-yeH5_Wd7vECc5jkgurrFvl0rCCCYHac22YVyb1TGufiskveO6USoXOPYicS-80aukKDcKKObk59Xah_Rywj9mhHUIzTWZcCmBM8nQ1pcQp5ULb9wF91oXqw4YxY5D9UMv-qE0Pnp2oiW-7pWG1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430114258</pqid></control><display><type>article</type><title>Edge photocurrent driven by terahertz electric field in bilayer graphene</title><source>American Physical Society Journals</source><creator>Candussio, S. ; Durnev, M. V. ; Tarasenko, S. A. ; Yin, J. ; Keil, J. ; Yang, Y. ; Son, S.-K. ; Mishchenko, A. ; Plank, H. ; Bel'kov, V. V. ; Slizovskiy, S. ; Fal'ko, V. ; Ganichev, S. D.</creator><creatorcontrib>Candussio, S. ; Durnev, M. V. ; Tarasenko, S. A. ; Yin, J. ; Keil, J. ; Yang, Y. ; Son, S.-K. ; Mishchenko, A. ; Plank, H. ; Bel'kov, V. V. ; Slizovskiy, S. ; Fal'ko, V. ; Ganichev, S. D.</creatorcontrib><description>We report on the observation of edge electric currents excited in bilayer graphene by terahertz laser radiation. We show that the current generation belongs to the class of second order in electric field phenomena and is controlled by the orientation of the THz electric field polarization plane. Additionally, applying a small magnetic field normal to the graphene plane leads to a phase shift in the polarization dependence. With increasing the magnetic field strength, the current starts to exhibit 1/B-magneto-oscillations with a period consistent with that of the Shubnikov–de Haas effect and amplitude by an order of magnitude larger as compared to the current at zero magnetic field measured under the same conditions. The microscopic theory developed shows that the current is formed in the edge's vicinity limited by the mean-free path of carriers and the screening length of the high-frequency electric field. The current originates from the alignment of the free carrier momenta and dynamic accumulation of charge at the edges, where the P-symmetry is naturally broken. The observed magneto-oscillations of the photocurrent are attributed to the formation of Landau levels.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.045406</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Bilayers ; Electric fields ; Field strength ; Graphene ; Magnetic fields ; Oscillations ; Photoelectric effect ; Photoelectric emission ; Polarization ; Terahertz frequencies</subject><ispartof>Physical review. B, 2020-07, Vol.102 (4), p.1, Article 045406</ispartof><rights>Copyright American Physical Society Jul 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-b3a6ac8b491d133e7f2791f695f177f533a6d2bc66537bf03b24fc7e74cd703a3</citedby><cites>FETCH-LOGICAL-c322t-b3a6ac8b491d133e7f2791f695f177f533a6d2bc66537bf03b24fc7e74cd703a3</cites><orcidid>0000-0002-4335-8518 ; 0000-0003-0131-0775 ; 0000-0002-0427-5664 ; 0000-0002-6507-2449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Candussio, S.</creatorcontrib><creatorcontrib>Durnev, M. V.</creatorcontrib><creatorcontrib>Tarasenko, S. A.</creatorcontrib><creatorcontrib>Yin, J.</creatorcontrib><creatorcontrib>Keil, J.</creatorcontrib><creatorcontrib>Yang, Y.</creatorcontrib><creatorcontrib>Son, S.-K.</creatorcontrib><creatorcontrib>Mishchenko, A.</creatorcontrib><creatorcontrib>Plank, H.</creatorcontrib><creatorcontrib>Bel'kov, V. V.</creatorcontrib><creatorcontrib>Slizovskiy, S.</creatorcontrib><creatorcontrib>Fal'ko, V.</creatorcontrib><creatorcontrib>Ganichev, S. D.</creatorcontrib><title>Edge photocurrent driven by terahertz electric field in bilayer graphene</title><title>Physical review. B</title><description>We report on the observation of edge electric currents excited in bilayer graphene by terahertz laser radiation. We show that the current generation belongs to the class of second order in electric field phenomena and is controlled by the orientation of the THz electric field polarization plane. Additionally, applying a small magnetic field normal to the graphene plane leads to a phase shift in the polarization dependence. With increasing the magnetic field strength, the current starts to exhibit 1/B-magneto-oscillations with a period consistent with that of the Shubnikov–de Haas effect and amplitude by an order of magnitude larger as compared to the current at zero magnetic field measured under the same conditions. The microscopic theory developed shows that the current is formed in the edge's vicinity limited by the mean-free path of carriers and the screening length of the high-frequency electric field. The current originates from the alignment of the free carrier momenta and dynamic accumulation of charge at the edges, where the P-symmetry is naturally broken. The observed magneto-oscillations of the photocurrent are attributed to the formation of Landau levels.</description><subject>Bilayers</subject><subject>Electric fields</subject><subject>Field strength</subject><subject>Graphene</subject><subject>Magnetic fields</subject><subject>Oscillations</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Polarization</subject><subject>Terahertz frequencies</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOOY-gS8Bnztv_jRZHnVMJwwU0eeSpjdrR21rmg7qp7cy9eke7jmcAz9CrhksGQNx-1KO_Sse75cM-BJkKkGdkRmXyiTGKHP-r1O4JIu-PwAAU2A0mBnZboo90q5sY-uGELCJtAjVERuajzRisCWG-EWxRhdD5aivsC5oNdlVbUcMdB9sV2KDV-TC27rHxe-dk_eHzdt6m-yeH5_Wd7vECc5jkgurrFvl0rCCCYHac22YVyb1TGufiskveO6USoXOPYicS-80aukKDcKKObk59Xah_Rywj9mhHUIzTWZcCmBM8nQ1pcQp5ULb9wF91oXqw4YxY5D9UMv-qE0Pnp2oiW-7pWG1</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Candussio, S.</creator><creator>Durnev, M. V.</creator><creator>Tarasenko, S. A.</creator><creator>Yin, J.</creator><creator>Keil, J.</creator><creator>Yang, Y.</creator><creator>Son, S.-K.</creator><creator>Mishchenko, A.</creator><creator>Plank, H.</creator><creator>Bel'kov, V. V.</creator><creator>Slizovskiy, S.</creator><creator>Fal'ko, V.</creator><creator>Ganichev, S. D.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4335-8518</orcidid><orcidid>https://orcid.org/0000-0003-0131-0775</orcidid><orcidid>https://orcid.org/0000-0002-0427-5664</orcidid><orcidid>https://orcid.org/0000-0002-6507-2449</orcidid></search><sort><creationdate>20200715</creationdate><title>Edge photocurrent driven by terahertz electric field in bilayer graphene</title><author>Candussio, S. ; Durnev, M. V. ; Tarasenko, S. A. ; Yin, J. ; Keil, J. ; Yang, Y. ; Son, S.-K. ; Mishchenko, A. ; Plank, H. ; Bel'kov, V. V. ; Slizovskiy, S. ; Fal'ko, V. ; Ganichev, S. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-b3a6ac8b491d133e7f2791f695f177f533a6d2bc66537bf03b24fc7e74cd703a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bilayers</topic><topic>Electric fields</topic><topic>Field strength</topic><topic>Graphene</topic><topic>Magnetic fields</topic><topic>Oscillations</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Polarization</topic><topic>Terahertz frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Candussio, S.</creatorcontrib><creatorcontrib>Durnev, M. V.</creatorcontrib><creatorcontrib>Tarasenko, S. A.</creatorcontrib><creatorcontrib>Yin, J.</creatorcontrib><creatorcontrib>Keil, J.</creatorcontrib><creatorcontrib>Yang, Y.</creatorcontrib><creatorcontrib>Son, S.-K.</creatorcontrib><creatorcontrib>Mishchenko, A.</creatorcontrib><creatorcontrib>Plank, H.</creatorcontrib><creatorcontrib>Bel'kov, V. V.</creatorcontrib><creatorcontrib>Slizovskiy, S.</creatorcontrib><creatorcontrib>Fal'ko, V.</creatorcontrib><creatorcontrib>Ganichev, S. D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Candussio, S.</au><au>Durnev, M. V.</au><au>Tarasenko, S. A.</au><au>Yin, J.</au><au>Keil, J.</au><au>Yang, Y.</au><au>Son, S.-K.</au><au>Mishchenko, A.</au><au>Plank, H.</au><au>Bel'kov, V. V.</au><au>Slizovskiy, S.</au><au>Fal'ko, V.</au><au>Ganichev, S. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge photocurrent driven by terahertz electric field in bilayer graphene</atitle><jtitle>Physical review. B</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>102</volume><issue>4</issue><spage>1</spage><pages>1-</pages><artnum>045406</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We report on the observation of edge electric currents excited in bilayer graphene by terahertz laser radiation. We show that the current generation belongs to the class of second order in electric field phenomena and is controlled by the orientation of the THz electric field polarization plane. Additionally, applying a small magnetic field normal to the graphene plane leads to a phase shift in the polarization dependence. With increasing the magnetic field strength, the current starts to exhibit 1/B-magneto-oscillations with a period consistent with that of the Shubnikov–de Haas effect and amplitude by an order of magnitude larger as compared to the current at zero magnetic field measured under the same conditions. The microscopic theory developed shows that the current is formed in the edge's vicinity limited by the mean-free path of carriers and the screening length of the high-frequency electric field. The current originates from the alignment of the free carrier momenta and dynamic accumulation of charge at the edges, where the P-symmetry is naturally broken. The observed magneto-oscillations of the photocurrent are attributed to the formation of Landau levels.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.102.045406</doi><orcidid>https://orcid.org/0000-0002-4335-8518</orcidid><orcidid>https://orcid.org/0000-0003-0131-0775</orcidid><orcidid>https://orcid.org/0000-0002-0427-5664</orcidid><orcidid>https://orcid.org/0000-0002-6507-2449</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-07, Vol.102 (4), p.1, Article 045406
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2430114258
source American Physical Society Journals
subjects Bilayers
Electric fields
Field strength
Graphene
Magnetic fields
Oscillations
Photoelectric effect
Photoelectric emission
Polarization
Terahertz frequencies
title Edge photocurrent driven by terahertz electric field in bilayer graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T06%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20photocurrent%20driven%20by%20terahertz%20electric%20field%20in%20bilayer%20graphene&rft.jtitle=Physical%20review.%20B&rft.au=Candussio,%20S.&rft.date=2020-07-15&rft.volume=102&rft.issue=4&rft.spage=1&rft.pages=1-&rft.artnum=045406&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.045406&rft_dat=%3Cproquest_cross%3E2430114258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430114258&rft_id=info:pmid/&rfr_iscdi=true