Automorphisms of Partially Commutative Metabelian Groups

Automorphisms of a partially commutative metabelian group whose defining graph contains no cycles are studied. It is proved that an IA-automorphism of such a group is identical if it fixes all hanging and isolated vertices of the graph. The concepts of a factor automorphism and of a matrix automorph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and logic 2020-05, Vol.59 (2), p.165-179
1. Verfasser: Timoshenko, E. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 2
container_start_page 165
container_title Algebra and logic
container_volume 59
creator Timoshenko, E. I.
description Automorphisms of a partially commutative metabelian group whose defining graph contains no cycles are studied. It is proved that an IA-automorphism of such a group is identical if it fixes all hanging and isolated vertices of the graph. The concepts of a factor automorphism and of a matrix automorphism are introduced. It is stated that every factor automorphism is represented as the product of an automorphism of the defining graph and a matrix automorphism.
doi_str_mv 10.1007/s10469-020-09588-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2430112789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430112789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f3bffb00b164eda374d22d69a0ab1ba4601660b72ed8a0c0444a53a33710d0753</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcF19GXjybpcig6CiO60HV4mabaoZ3UpBXm31ut4M7V48I998Eh5JLBNQPQN4mBVAUFDhSK3Biqj8iC5VpQI4AfkwUAcJpzwU_JWUq7KRbKwIKY1TiELsT-vUldykKdPWMcGmzbQ1aGrhsHHJpPnz36AZ1vG9xn6xjGPp2Tkxrb5C9-75K83t2-lPd087R-KFcbuhWsGGgtXF07AMeU9BUKLSvOK1UgoGMOpQKmFDjNfWUQtiClxFygEJpBBToXS3I17_YxfIw-DXYXxrifXlouBTDGtSmmFp9b2xhSir62fWw6jAfLwH4bsrMhOxmyP4asniAxQ2kq7998_Jv-h_oCTuBoVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430112789</pqid></control><display><type>article</type><title>Automorphisms of Partially Commutative Metabelian Groups</title><source>SpringerLink Journals - AutoHoldings</source><creator>Timoshenko, E. I.</creator><creatorcontrib>Timoshenko, E. I.</creatorcontrib><description>Automorphisms of a partially commutative metabelian group whose defining graph contains no cycles are studied. It is proved that an IA-automorphism of such a group is identical if it fixes all hanging and isolated vertices of the graph. The concepts of a factor automorphism and of a matrix automorphism are introduced. It is stated that every factor automorphism is represented as the product of an automorphism of the defining graph and a matrix automorphism.</description><identifier>ISSN: 0002-5232</identifier><identifier>EISSN: 1573-8302</identifier><identifier>DOI: 10.1007/s10469-020-09588-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Apexes ; Automorphisms ; Graph theory ; Graphical representations ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics</subject><ispartof>Algebra and logic, 2020-05, Vol.59 (2), p.165-179</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f3bffb00b164eda374d22d69a0ab1ba4601660b72ed8a0c0444a53a33710d0753</citedby><cites>FETCH-LOGICAL-c319t-f3bffb00b164eda374d22d69a0ab1ba4601660b72ed8a0c0444a53a33710d0753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10469-020-09588-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10469-020-09588-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Timoshenko, E. I.</creatorcontrib><title>Automorphisms of Partially Commutative Metabelian Groups</title><title>Algebra and logic</title><addtitle>Algebra Logic</addtitle><description>Automorphisms of a partially commutative metabelian group whose defining graph contains no cycles are studied. It is proved that an IA-automorphism of such a group is identical if it fixes all hanging and isolated vertices of the graph. The concepts of a factor automorphism and of a matrix automorphism are introduced. It is stated that every factor automorphism is represented as the product of an automorphism of the defining graph and a matrix automorphism.</description><subject>Algebra</subject><subject>Apexes</subject><subject>Automorphisms</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0002-5232</issn><issn>1573-8302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcF19GXjybpcig6CiO60HV4mabaoZ3UpBXm31ut4M7V48I998Eh5JLBNQPQN4mBVAUFDhSK3Biqj8iC5VpQI4AfkwUAcJpzwU_JWUq7KRbKwIKY1TiELsT-vUldykKdPWMcGmzbQ1aGrhsHHJpPnz36AZ1vG9xn6xjGPp2Tkxrb5C9-75K83t2-lPd087R-KFcbuhWsGGgtXF07AMeU9BUKLSvOK1UgoGMOpQKmFDjNfWUQtiClxFygEJpBBToXS3I17_YxfIw-DXYXxrifXlouBTDGtSmmFp9b2xhSir62fWw6jAfLwH4bsrMhOxmyP4asniAxQ2kq7998_Jv-h_oCTuBoVQ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Timoshenko, E. I.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>Automorphisms of Partially Commutative Metabelian Groups</title><author>Timoshenko, E. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f3bffb00b164eda374d22d69a0ab1ba4601660b72ed8a0c0444a53a33710d0753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Apexes</topic><topic>Automorphisms</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timoshenko, E. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Algebra and logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timoshenko, E. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automorphisms of Partially Commutative Metabelian Groups</atitle><jtitle>Algebra and logic</jtitle><stitle>Algebra Logic</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>59</volume><issue>2</issue><spage>165</spage><epage>179</epage><pages>165-179</pages><issn>0002-5232</issn><eissn>1573-8302</eissn><abstract>Automorphisms of a partially commutative metabelian group whose defining graph contains no cycles are studied. It is proved that an IA-automorphism of such a group is identical if it fixes all hanging and isolated vertices of the graph. The concepts of a factor automorphism and of a matrix automorphism are introduced. It is stated that every factor automorphism is represented as the product of an automorphism of the defining graph and a matrix automorphism.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10469-020-09588-7</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-5232
ispartof Algebra and logic, 2020-05, Vol.59 (2), p.165-179
issn 0002-5232
1573-8302
language eng
recordid cdi_proquest_journals_2430112789
source SpringerLink Journals - AutoHoldings
subjects Algebra
Apexes
Automorphisms
Graph theory
Graphical representations
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
title Automorphisms of Partially Commutative Metabelian Groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automorphisms%20of%20Partially%20Commutative%20Metabelian%20Groups&rft.jtitle=Algebra%20and%20logic&rft.au=Timoshenko,%20E.%20I.&rft.date=2020-05-01&rft.volume=59&rft.issue=2&rft.spage=165&rft.epage=179&rft.pages=165-179&rft.issn=0002-5232&rft.eissn=1573-8302&rft_id=info:doi/10.1007/s10469-020-09588-7&rft_dat=%3Cproquest_cross%3E2430112789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430112789&rft_id=info:pmid/&rfr_iscdi=true