Task Classification and Scheduling Based on K-Means Clustering for Edge Computing

The rapid evolution of Internet of Things and cloud computing have endorsed a novel computing paradigm called edge computing. Here tasks are processed by edge devices before sent to the cloud to reduce the computational latency and overhead of cloud server. In edge computing efficient classification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless personal communications 2020-08, Vol.113 (4), p.2611-2624
Hauptverfasser: Ullah, Ihsan, Youn, Hee Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2624
container_issue 4
container_start_page 2611
container_title Wireless personal communications
container_volume 113
creator Ullah, Ihsan
Youn, Hee Yong
description The rapid evolution of Internet of Things and cloud computing have endorsed a novel computing paradigm called edge computing. Here tasks are processed by edge devices before sent to the cloud to reduce the computational latency and overhead of cloud server. In edge computing efficient classification and distribution of the tasks among the constituent nodes is a challenging issue because of their resource limitedness and heterogeneity. In this paper a novel scheme named KTCS (K-means Clustering-based Task Classification and Scheduling) is proposed which classifies the task based on the type of resource requirement in terms of CPU, I/O, or COMM before distributed to the edge node. Using the K-means algorithm modeled with the M / M / c queuing theory, the proposed scheme efficiently schedules and assigns the task so that the utilization of the edge devices can be increased. The simulation result reveals that the proposed scheme significantly improves the performance of edge nodes in terms of task execution time and resource utilization.
doi_str_mv 10.1007/s11277-020-07343-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2430112596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430112596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-98c6e49cb82b645c52ff83031c8a5705cce45f3f877153848065ed0153eae8e33</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9FJ0jTJUcv6BxURV_AWsmmydt1ta9Ky-O3NWsGbpxlm3nvD_BA6JXBOAMRFJIQKgYECBsFyhrd7aEK4oFiy_G0fTUBRhQtK6CE6inEFkGyKTtDz3MSPrFybGGtfW9PXbZOZpspe7LurhnXdLLMrE12Vpfk9fnSmiUk-xN6F3c63IZtVS5eV7aYb-jQ6RgferKM7-a1T9Ho9m5e3-OHp5q68fMCWEdVjJW3hcmUXki6KnFtOvZcMGLHScAHcWpdzz7wUgnAmcwkFdxWk3hknHWNTdDbmdqH9HFzs9aodQpNOapozSEC4KpKKjiob2hiD87oL9caEL01A79DpEZ1O6PQPOr1NJjaaYrd70oW_6H9c388jcLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430112596</pqid></control><display><type>article</type><title>Task Classification and Scheduling Based on K-Means Clustering for Edge Computing</title><source>Springer Nature - Complete Springer Journals</source><creator>Ullah, Ihsan ; Youn, Hee Yong</creator><creatorcontrib>Ullah, Ihsan ; Youn, Hee Yong</creatorcontrib><description>The rapid evolution of Internet of Things and cloud computing have endorsed a novel computing paradigm called edge computing. Here tasks are processed by edge devices before sent to the cloud to reduce the computational latency and overhead of cloud server. In edge computing efficient classification and distribution of the tasks among the constituent nodes is a challenging issue because of their resource limitedness and heterogeneity. In this paper a novel scheme named KTCS (K-means Clustering-based Task Classification and Scheduling) is proposed which classifies the task based on the type of resource requirement in terms of CPU, I/O, or COMM before distributed to the edge node. Using the K-means algorithm modeled with the M / M / c queuing theory, the proposed scheme efficiently schedules and assigns the task so that the utilization of the edge devices can be increased. The simulation result reveals that the proposed scheme significantly improves the performance of edge nodes in terms of task execution time and resource utilization.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-020-07343-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Classification ; Cloud computing ; Cluster analysis ; Clustering ; Communications Engineering ; Computer Communication Networks ; Computer simulation ; Edge computing ; Engineering ; Heterogeneity ; Internet of Things ; Networks ; Nodes ; Performance enhancement ; Queues ; Queuing theory ; Resource utilization ; Schedules ; Signal,Image and Speech Processing ; Task scheduling ; Vector quantization</subject><ispartof>Wireless personal communications, 2020-08, Vol.113 (4), p.2611-2624</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-98c6e49cb82b645c52ff83031c8a5705cce45f3f877153848065ed0153eae8e33</citedby><cites>FETCH-LOGICAL-c319t-98c6e49cb82b645c52ff83031c8a5705cce45f3f877153848065ed0153eae8e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-020-07343-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-020-07343-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ullah, Ihsan</creatorcontrib><creatorcontrib>Youn, Hee Yong</creatorcontrib><title>Task Classification and Scheduling Based on K-Means Clustering for Edge Computing</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>The rapid evolution of Internet of Things and cloud computing have endorsed a novel computing paradigm called edge computing. Here tasks are processed by edge devices before sent to the cloud to reduce the computational latency and overhead of cloud server. In edge computing efficient classification and distribution of the tasks among the constituent nodes is a challenging issue because of their resource limitedness and heterogeneity. In this paper a novel scheme named KTCS (K-means Clustering-based Task Classification and Scheduling) is proposed which classifies the task based on the type of resource requirement in terms of CPU, I/O, or COMM before distributed to the edge node. Using the K-means algorithm modeled with the M / M / c queuing theory, the proposed scheme efficiently schedules and assigns the task so that the utilization of the edge devices can be increased. The simulation result reveals that the proposed scheme significantly improves the performance of edge nodes in terms of task execution time and resource utilization.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Cloud computing</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Computer simulation</subject><subject>Edge computing</subject><subject>Engineering</subject><subject>Heterogeneity</subject><subject>Internet of Things</subject><subject>Networks</subject><subject>Nodes</subject><subject>Performance enhancement</subject><subject>Queues</subject><subject>Queuing theory</subject><subject>Resource utilization</subject><subject>Schedules</subject><subject>Signal,Image and Speech Processing</subject><subject>Task scheduling</subject><subject>Vector quantization</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9FJ0jTJUcv6BxURV_AWsmmydt1ta9Ky-O3NWsGbpxlm3nvD_BA6JXBOAMRFJIQKgYECBsFyhrd7aEK4oFiy_G0fTUBRhQtK6CE6inEFkGyKTtDz3MSPrFybGGtfW9PXbZOZpspe7LurhnXdLLMrE12Vpfk9fnSmiUk-xN6F3c63IZtVS5eV7aYb-jQ6RgferKM7-a1T9Ho9m5e3-OHp5q68fMCWEdVjJW3hcmUXki6KnFtOvZcMGLHScAHcWpdzz7wUgnAmcwkFdxWk3hknHWNTdDbmdqH9HFzs9aodQpNOapozSEC4KpKKjiob2hiD87oL9caEL01A79DpEZ1O6PQPOr1NJjaaYrd70oW_6H9c388jcLw</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Ullah, Ihsan</creator><creator>Youn, Hee Yong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>Task Classification and Scheduling Based on K-Means Clustering for Edge Computing</title><author>Ullah, Ihsan ; Youn, Hee Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-98c6e49cb82b645c52ff83031c8a5705cce45f3f877153848065ed0153eae8e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Cloud computing</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Computer simulation</topic><topic>Edge computing</topic><topic>Engineering</topic><topic>Heterogeneity</topic><topic>Internet of Things</topic><topic>Networks</topic><topic>Nodes</topic><topic>Performance enhancement</topic><topic>Queues</topic><topic>Queuing theory</topic><topic>Resource utilization</topic><topic>Schedules</topic><topic>Signal,Image and Speech Processing</topic><topic>Task scheduling</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ullah, Ihsan</creatorcontrib><creatorcontrib>Youn, Hee Yong</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ullah, Ihsan</au><au>Youn, Hee Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task Classification and Scheduling Based on K-Means Clustering for Edge Computing</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>113</volume><issue>4</issue><spage>2611</spage><epage>2624</epage><pages>2611-2624</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>The rapid evolution of Internet of Things and cloud computing have endorsed a novel computing paradigm called edge computing. Here tasks are processed by edge devices before sent to the cloud to reduce the computational latency and overhead of cloud server. In edge computing efficient classification and distribution of the tasks among the constituent nodes is a challenging issue because of their resource limitedness and heterogeneity. In this paper a novel scheme named KTCS (K-means Clustering-based Task Classification and Scheduling) is proposed which classifies the task based on the type of resource requirement in terms of CPU, I/O, or COMM before distributed to the edge node. Using the K-means algorithm modeled with the M / M / c queuing theory, the proposed scheme efficiently schedules and assigns the task so that the utilization of the edge devices can be increased. The simulation result reveals that the proposed scheme significantly improves the performance of edge nodes in terms of task execution time and resource utilization.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-020-07343-w</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0929-6212
ispartof Wireless personal communications, 2020-08, Vol.113 (4), p.2611-2624
issn 0929-6212
1572-834X
language eng
recordid cdi_proquest_journals_2430112596
source Springer Nature - Complete Springer Journals
subjects Algorithms
Classification
Cloud computing
Cluster analysis
Clustering
Communications Engineering
Computer Communication Networks
Computer simulation
Edge computing
Engineering
Heterogeneity
Internet of Things
Networks
Nodes
Performance enhancement
Queues
Queuing theory
Resource utilization
Schedules
Signal,Image and Speech Processing
Task scheduling
Vector quantization
title Task Classification and Scheduling Based on K-Means Clustering for Edge Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20Classification%20and%20Scheduling%20Based%20on%20K-Means%20Clustering%20for%20Edge%20Computing&rft.jtitle=Wireless%20personal%20communications&rft.au=Ullah,%20Ihsan&rft.date=2020-08-01&rft.volume=113&rft.issue=4&rft.spage=2611&rft.epage=2624&rft.pages=2611-2624&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-020-07343-w&rft_dat=%3Cproquest_cross%3E2430112596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430112596&rft_id=info:pmid/&rfr_iscdi=true