Task Classification and Scheduling Based on K-Means Clustering for Edge Computing
The rapid evolution of Internet of Things and cloud computing have endorsed a novel computing paradigm called edge computing. Here tasks are processed by edge devices before sent to the cloud to reduce the computational latency and overhead of cloud server. In edge computing efficient classification...
Gespeichert in:
Veröffentlicht in: | Wireless personal communications 2020-08, Vol.113 (4), p.2611-2624 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2624 |
---|---|
container_issue | 4 |
container_start_page | 2611 |
container_title | Wireless personal communications |
container_volume | 113 |
creator | Ullah, Ihsan Youn, Hee Yong |
description | The rapid evolution of Internet of Things and cloud computing have endorsed a novel computing paradigm called edge computing. Here tasks are processed by edge devices before sent to the cloud to reduce the computational latency and overhead of cloud server. In edge computing efficient classification and distribution of the tasks among the constituent nodes is a challenging issue because of their resource limitedness and heterogeneity. In this paper a novel scheme named KTCS (K-means Clustering-based Task Classification and Scheduling) is proposed which classifies the task based on the type of resource requirement in terms of CPU, I/O, or COMM before distributed to the edge node. Using the K-means algorithm modeled with the
M
/
M
/
c
queuing theory, the proposed scheme efficiently schedules and assigns the task so that the utilization of the edge devices can be increased. The simulation result reveals that the proposed scheme significantly improves the performance of edge nodes in terms of task execution time and resource utilization. |
doi_str_mv | 10.1007/s11277-020-07343-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2430112596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430112596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-98c6e49cb82b645c52ff83031c8a5705cce45f3f877153848065ed0153eae8e33</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9FJ0jTJUcv6BxURV_AWsmmydt1ta9Ky-O3NWsGbpxlm3nvD_BA6JXBOAMRFJIQKgYECBsFyhrd7aEK4oFiy_G0fTUBRhQtK6CE6inEFkGyKTtDz3MSPrFybGGtfW9PXbZOZpspe7LurhnXdLLMrE12Vpfk9fnSmiUk-xN6F3c63IZtVS5eV7aYb-jQ6RgferKM7-a1T9Ho9m5e3-OHp5q68fMCWEdVjJW3hcmUXki6KnFtOvZcMGLHScAHcWpdzz7wUgnAmcwkFdxWk3hknHWNTdDbmdqH9HFzs9aodQpNOapozSEC4KpKKjiob2hiD87oL9caEL01A79DpEZ1O6PQPOr1NJjaaYrd70oW_6H9c388jcLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430112596</pqid></control><display><type>article</type><title>Task Classification and Scheduling Based on K-Means Clustering for Edge Computing</title><source>Springer Nature - Complete Springer Journals</source><creator>Ullah, Ihsan ; Youn, Hee Yong</creator><creatorcontrib>Ullah, Ihsan ; Youn, Hee Yong</creatorcontrib><description>The rapid evolution of Internet of Things and cloud computing have endorsed a novel computing paradigm called edge computing. Here tasks are processed by edge devices before sent to the cloud to reduce the computational latency and overhead of cloud server. In edge computing efficient classification and distribution of the tasks among the constituent nodes is a challenging issue because of their resource limitedness and heterogeneity. In this paper a novel scheme named KTCS (K-means Clustering-based Task Classification and Scheduling) is proposed which classifies the task based on the type of resource requirement in terms of CPU, I/O, or COMM before distributed to the edge node. Using the K-means algorithm modeled with the
M
/
M
/
c
queuing theory, the proposed scheme efficiently schedules and assigns the task so that the utilization of the edge devices can be increased. The simulation result reveals that the proposed scheme significantly improves the performance of edge nodes in terms of task execution time and resource utilization.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-020-07343-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Classification ; Cloud computing ; Cluster analysis ; Clustering ; Communications Engineering ; Computer Communication Networks ; Computer simulation ; Edge computing ; Engineering ; Heterogeneity ; Internet of Things ; Networks ; Nodes ; Performance enhancement ; Queues ; Queuing theory ; Resource utilization ; Schedules ; Signal,Image and Speech Processing ; Task scheduling ; Vector quantization</subject><ispartof>Wireless personal communications, 2020-08, Vol.113 (4), p.2611-2624</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-98c6e49cb82b645c52ff83031c8a5705cce45f3f877153848065ed0153eae8e33</citedby><cites>FETCH-LOGICAL-c319t-98c6e49cb82b645c52ff83031c8a5705cce45f3f877153848065ed0153eae8e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-020-07343-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-020-07343-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ullah, Ihsan</creatorcontrib><creatorcontrib>Youn, Hee Yong</creatorcontrib><title>Task Classification and Scheduling Based on K-Means Clustering for Edge Computing</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>The rapid evolution of Internet of Things and cloud computing have endorsed a novel computing paradigm called edge computing. Here tasks are processed by edge devices before sent to the cloud to reduce the computational latency and overhead of cloud server. In edge computing efficient classification and distribution of the tasks among the constituent nodes is a challenging issue because of their resource limitedness and heterogeneity. In this paper a novel scheme named KTCS (K-means Clustering-based Task Classification and Scheduling) is proposed which classifies the task based on the type of resource requirement in terms of CPU, I/O, or COMM before distributed to the edge node. Using the K-means algorithm modeled with the
M
/
M
/
c
queuing theory, the proposed scheme efficiently schedules and assigns the task so that the utilization of the edge devices can be increased. The simulation result reveals that the proposed scheme significantly improves the performance of edge nodes in terms of task execution time and resource utilization.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Cloud computing</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Computer simulation</subject><subject>Edge computing</subject><subject>Engineering</subject><subject>Heterogeneity</subject><subject>Internet of Things</subject><subject>Networks</subject><subject>Nodes</subject><subject>Performance enhancement</subject><subject>Queues</subject><subject>Queuing theory</subject><subject>Resource utilization</subject><subject>Schedules</subject><subject>Signal,Image and Speech Processing</subject><subject>Task scheduling</subject><subject>Vector quantization</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9FJ0jTJUcv6BxURV_AWsmmydt1ta9Ky-O3NWsGbpxlm3nvD_BA6JXBOAMRFJIQKgYECBsFyhrd7aEK4oFiy_G0fTUBRhQtK6CE6inEFkGyKTtDz3MSPrFybGGtfW9PXbZOZpspe7LurhnXdLLMrE12Vpfk9fnSmiUk-xN6F3c63IZtVS5eV7aYb-jQ6RgferKM7-a1T9Ho9m5e3-OHp5q68fMCWEdVjJW3hcmUXki6KnFtOvZcMGLHScAHcWpdzz7wUgnAmcwkFdxWk3hknHWNTdDbmdqH9HFzs9aodQpNOapozSEC4KpKKjiob2hiD87oL9caEL01A79DpEZ1O6PQPOr1NJjaaYrd70oW_6H9c388jcLw</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Ullah, Ihsan</creator><creator>Youn, Hee Yong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>Task Classification and Scheduling Based on K-Means Clustering for Edge Computing</title><author>Ullah, Ihsan ; Youn, Hee Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-98c6e49cb82b645c52ff83031c8a5705cce45f3f877153848065ed0153eae8e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Cloud computing</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Computer simulation</topic><topic>Edge computing</topic><topic>Engineering</topic><topic>Heterogeneity</topic><topic>Internet of Things</topic><topic>Networks</topic><topic>Nodes</topic><topic>Performance enhancement</topic><topic>Queues</topic><topic>Queuing theory</topic><topic>Resource utilization</topic><topic>Schedules</topic><topic>Signal,Image and Speech Processing</topic><topic>Task scheduling</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ullah, Ihsan</creatorcontrib><creatorcontrib>Youn, Hee Yong</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ullah, Ihsan</au><au>Youn, Hee Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task Classification and Scheduling Based on K-Means Clustering for Edge Computing</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>113</volume><issue>4</issue><spage>2611</spage><epage>2624</epage><pages>2611-2624</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>The rapid evolution of Internet of Things and cloud computing have endorsed a novel computing paradigm called edge computing. Here tasks are processed by edge devices before sent to the cloud to reduce the computational latency and overhead of cloud server. In edge computing efficient classification and distribution of the tasks among the constituent nodes is a challenging issue because of their resource limitedness and heterogeneity. In this paper a novel scheme named KTCS (K-means Clustering-based Task Classification and Scheduling) is proposed which classifies the task based on the type of resource requirement in terms of CPU, I/O, or COMM before distributed to the edge node. Using the K-means algorithm modeled with the
M
/
M
/
c
queuing theory, the proposed scheme efficiently schedules and assigns the task so that the utilization of the edge devices can be increased. The simulation result reveals that the proposed scheme significantly improves the performance of edge nodes in terms of task execution time and resource utilization.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-020-07343-w</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-6212 |
ispartof | Wireless personal communications, 2020-08, Vol.113 (4), p.2611-2624 |
issn | 0929-6212 1572-834X |
language | eng |
recordid | cdi_proquest_journals_2430112596 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Classification Cloud computing Cluster analysis Clustering Communications Engineering Computer Communication Networks Computer simulation Edge computing Engineering Heterogeneity Internet of Things Networks Nodes Performance enhancement Queues Queuing theory Resource utilization Schedules Signal,Image and Speech Processing Task scheduling Vector quantization |
title | Task Classification and Scheduling Based on K-Means Clustering for Edge Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20Classification%20and%20Scheduling%20Based%20on%20K-Means%20Clustering%20for%20Edge%20Computing&rft.jtitle=Wireless%20personal%20communications&rft.au=Ullah,%20Ihsan&rft.date=2020-08-01&rft.volume=113&rft.issue=4&rft.spage=2611&rft.epage=2624&rft.pages=2611-2624&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-020-07343-w&rft_dat=%3Cproquest_cross%3E2430112596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430112596&rft_id=info:pmid/&rfr_iscdi=true |