Formation of solitary structures and envelope solitons in electron acoustic wave in inner magnetosphere plasma with suprathermal ions

The propagation of electron acoustic solitary waves is investigated in magnetized two‐temperature electron plasma with supra‐thermal ion. By using the reductive perturbation technique, the Korteweg de‐Vries (KdV) equation is derived. Later solving this equation, a solitary wave solution has been der...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to plasma physics (1988) 2020-08, Vol.60 (7), p.n/a, Article 201900202
Hauptverfasser: Sarkar, Jit, Chandra, Swarniv, Goswami, Jyotirmoy, Ghosh, Basudev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Contributions to plasma physics (1988)
container_volume 60
creator Sarkar, Jit
Chandra, Swarniv
Goswami, Jyotirmoy
Ghosh, Basudev
description The propagation of electron acoustic solitary waves is investigated in magnetized two‐temperature electron plasma with supra‐thermal ion. By using the reductive perturbation technique, the Korteweg de‐Vries (KdV) equation is derived. Later solving this equation, a solitary wave solution has been derived. These are mainly in astrophysical plasmas where changes of local charge density, temperature, and energy of particles produce considerable effects on the plasma system. The effects of supra‐thermality, density, and Mach number on solitary structures are studied in detail. The results show that the supra‐thermal index (κ) and ion to electron temperature ratio (σ) alters the regime where solitary waves may exist. While studying the solitary profile for different parametric variation some interesting conclusion can be drawn; it is shown that the solitary profile becomes flatter. This can be due to the thermal energy associated with the hot electrons. However, with the increase in ion density with respect to the cold electrons' density, the solitary waves become steeper and sharper. This is due to the comparatively heavier mass of ions. The density of cold electron also increases the solitary structures in a similar manner. The higher the density of cold electrons, sharper will be the profile. The above findings will be helpful in understanding many astrophysical phenomena and data obtained by space missions. For a further study, we keep the investigation of the formation of other kinds of stationary structures like shocks, double layers, etc.
doi_str_mv 10.1002/ctpp.201900202
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2430028683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430028683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-4cdfddb16f2e630324f890ed6123177e0be6694cbfddf43b9afd043597d7bd2a3</originalsourceid><addsrcrecordid>eNqNkMtKxDAUhoMoOF62rgMupWMubaZdSnFUGNCFrkuanmikTWqSzjAP4HubYUSXusrlfP85hw-hC0rmlBB2reI4zhmhVXoQdoBmtGA041UpDtGMlIJnlOTsGJ2E8E4IqUROZ-hz6fwgo3EWO42D602UfotD9JOKk4eApe0w2DX0boQ94GzAxmLoQUWfglK5KUSj8EauYVcx1oLHg3y1EF0Y38ADHnsZBok3Jr7hMI1exvQ9yB6n0eEMHWnZBzj_Pk_Ry_L2ub7PVo93D_XNKlOcLliWq053XUuFZiA44SzXZUWgE5Sl-gJIC0JUuWoTpXPeVlJ3JOdFtegWbcckP0WX-76jdx8ThNi8u8nbNLJhOU_eSlHyRM33lPIuBA-6Gb0ZkpaGkmanutmpbn5Up0C5D2ygdTooA1bBTyi5LmhRCCHSjdA6Gd75rt1kY4pe_T-a6OqbNj1s_1irqZ-fnn6X_AJiwqfV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430028683</pqid></control><display><type>article</type><title>Formation of solitary structures and envelope solitons in electron acoustic wave in inner magnetosphere plasma with suprathermal ions</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Sarkar, Jit ; Chandra, Swarniv ; Goswami, Jyotirmoy ; Ghosh, Basudev</creator><creatorcontrib>Sarkar, Jit ; Chandra, Swarniv ; Goswami, Jyotirmoy ; Ghosh, Basudev</creatorcontrib><description>The propagation of electron acoustic solitary waves is investigated in magnetized two‐temperature electron plasma with supra‐thermal ion. By using the reductive perturbation technique, the Korteweg de‐Vries (KdV) equation is derived. Later solving this equation, a solitary wave solution has been derived. These are mainly in astrophysical plasmas where changes of local charge density, temperature, and energy of particles produce considerable effects on the plasma system. The effects of supra‐thermality, density, and Mach number on solitary structures are studied in detail. The results show that the supra‐thermal index (κ) and ion to electron temperature ratio (σ) alters the regime where solitary waves may exist. While studying the solitary profile for different parametric variation some interesting conclusion can be drawn; it is shown that the solitary profile becomes flatter. This can be due to the thermal energy associated with the hot electrons. However, with the increase in ion density with respect to the cold electrons' density, the solitary waves become steeper and sharper. This is due to the comparatively heavier mass of ions. The density of cold electron also increases the solitary structures in a similar manner. The higher the density of cold electrons, sharper will be the profile. The above findings will be helpful in understanding many astrophysical phenomena and data obtained by space missions. For a further study, we keep the investigation of the formation of other kinds of stationary structures like shocks, double layers, etc.</description><identifier>ISSN: 0863-1042</identifier><identifier>EISSN: 1521-3986</identifier><identifier>DOI: 10.1002/ctpp.201900202</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Acoustic propagation ; Acoustic waves ; Charge density ; Electron energy ; Electron plasma ; Energy charge ; envelop soliton ; forced KdV ; Hot electrons ; Ion density (concentration) ; Ions ; Kappa distributed ions ; Mach number ; Magnetospheres ; Perturbation methods ; Physical Sciences ; Physics ; Physics, Fluids &amp; Plasmas ; quantum hydrodynamic model ; Science &amp; Technology ; Solitary waves ; Space missions ; Temperature ratio ; Thermal energy ; Wave propagation</subject><ispartof>Contributions to plasma physics (1988), 2020-08, Vol.60 (7), p.n/a, Article 201900202</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>34</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000515566600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3172-4cdfddb16f2e630324f890ed6123177e0be6694cbfddf43b9afd043597d7bd2a3</citedby><cites>FETCH-LOGICAL-c3172-4cdfddb16f2e630324f890ed6123177e0be6694cbfddf43b9afd043597d7bd2a3</cites><orcidid>0000-0003-4740-8823 ; 0000-0003-4616-197X ; 0000-0001-9410-1619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fctpp.201900202$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fctpp.201900202$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,28253,45579,45580</link.rule.ids></links><search><creatorcontrib>Sarkar, Jit</creatorcontrib><creatorcontrib>Chandra, Swarniv</creatorcontrib><creatorcontrib>Goswami, Jyotirmoy</creatorcontrib><creatorcontrib>Ghosh, Basudev</creatorcontrib><title>Formation of solitary structures and envelope solitons in electron acoustic wave in inner magnetosphere plasma with suprathermal ions</title><title>Contributions to plasma physics (1988)</title><addtitle>CONTRIB PLASM PHYS</addtitle><description>The propagation of electron acoustic solitary waves is investigated in magnetized two‐temperature electron plasma with supra‐thermal ion. By using the reductive perturbation technique, the Korteweg de‐Vries (KdV) equation is derived. Later solving this equation, a solitary wave solution has been derived. These are mainly in astrophysical plasmas where changes of local charge density, temperature, and energy of particles produce considerable effects on the plasma system. The effects of supra‐thermality, density, and Mach number on solitary structures are studied in detail. The results show that the supra‐thermal index (κ) and ion to electron temperature ratio (σ) alters the regime where solitary waves may exist. While studying the solitary profile for different parametric variation some interesting conclusion can be drawn; it is shown that the solitary profile becomes flatter. This can be due to the thermal energy associated with the hot electrons. However, with the increase in ion density with respect to the cold electrons' density, the solitary waves become steeper and sharper. This is due to the comparatively heavier mass of ions. The density of cold electron also increases the solitary structures in a similar manner. The higher the density of cold electrons, sharper will be the profile. The above findings will be helpful in understanding many astrophysical phenomena and data obtained by space missions. For a further study, we keep the investigation of the formation of other kinds of stationary structures like shocks, double layers, etc.</description><subject>Acoustic propagation</subject><subject>Acoustic waves</subject><subject>Charge density</subject><subject>Electron energy</subject><subject>Electron plasma</subject><subject>Energy charge</subject><subject>envelop soliton</subject><subject>forced KdV</subject><subject>Hot electrons</subject><subject>Ion density (concentration)</subject><subject>Ions</subject><subject>Kappa distributed ions</subject><subject>Mach number</subject><subject>Magnetospheres</subject><subject>Perturbation methods</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Fluids &amp; Plasmas</subject><subject>quantum hydrodynamic model</subject><subject>Science &amp; Technology</subject><subject>Solitary waves</subject><subject>Space missions</subject><subject>Temperature ratio</subject><subject>Thermal energy</subject><subject>Wave propagation</subject><issn>0863-1042</issn><issn>1521-3986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMtKxDAUhoMoOF62rgMupWMubaZdSnFUGNCFrkuanmikTWqSzjAP4HubYUSXusrlfP85hw-hC0rmlBB2reI4zhmhVXoQdoBmtGA041UpDtGMlIJnlOTsGJ2E8E4IqUROZ-hz6fwgo3EWO42D602UfotD9JOKk4eApe0w2DX0boQ94GzAxmLoQUWfglK5KUSj8EauYVcx1oLHg3y1EF0Y38ADHnsZBok3Jr7hMI1exvQ9yB6n0eEMHWnZBzj_Pk_Ry_L2ub7PVo93D_XNKlOcLliWq053XUuFZiA44SzXZUWgE5Sl-gJIC0JUuWoTpXPeVlJ3JOdFtegWbcckP0WX-76jdx8ThNi8u8nbNLJhOU_eSlHyRM33lPIuBA-6Gb0ZkpaGkmanutmpbn5Up0C5D2ygdTooA1bBTyi5LmhRCCHSjdA6Gd75rt1kY4pe_T-a6OqbNj1s_1irqZ-fnn6X_AJiwqfV</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Sarkar, Jit</creator><creator>Chandra, Swarniv</creator><creator>Goswami, Jyotirmoy</creator><creator>Ghosh, Basudev</creator><general>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4740-8823</orcidid><orcidid>https://orcid.org/0000-0003-4616-197X</orcidid><orcidid>https://orcid.org/0000-0001-9410-1619</orcidid></search><sort><creationdate>202008</creationdate><title>Formation of solitary structures and envelope solitons in electron acoustic wave in inner magnetosphere plasma with suprathermal ions</title><author>Sarkar, Jit ; Chandra, Swarniv ; Goswami, Jyotirmoy ; Ghosh, Basudev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-4cdfddb16f2e630324f890ed6123177e0be6694cbfddf43b9afd043597d7bd2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic propagation</topic><topic>Acoustic waves</topic><topic>Charge density</topic><topic>Electron energy</topic><topic>Electron plasma</topic><topic>Energy charge</topic><topic>envelop soliton</topic><topic>forced KdV</topic><topic>Hot electrons</topic><topic>Ion density (concentration)</topic><topic>Ions</topic><topic>Kappa distributed ions</topic><topic>Mach number</topic><topic>Magnetospheres</topic><topic>Perturbation methods</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Fluids &amp; Plasmas</topic><topic>quantum hydrodynamic model</topic><topic>Science &amp; Technology</topic><topic>Solitary waves</topic><topic>Space missions</topic><topic>Temperature ratio</topic><topic>Thermal energy</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Jit</creatorcontrib><creatorcontrib>Chandra, Swarniv</creatorcontrib><creatorcontrib>Goswami, Jyotirmoy</creatorcontrib><creatorcontrib>Ghosh, Basudev</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Contributions to plasma physics (1988)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, Jit</au><au>Chandra, Swarniv</au><au>Goswami, Jyotirmoy</au><au>Ghosh, Basudev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of solitary structures and envelope solitons in electron acoustic wave in inner magnetosphere plasma with suprathermal ions</atitle><jtitle>Contributions to plasma physics (1988)</jtitle><stitle>CONTRIB PLASM PHYS</stitle><date>2020-08</date><risdate>2020</risdate><volume>60</volume><issue>7</issue><epage>n/a</epage><artnum>201900202</artnum><issn>0863-1042</issn><eissn>1521-3986</eissn><abstract>The propagation of electron acoustic solitary waves is investigated in magnetized two‐temperature electron plasma with supra‐thermal ion. By using the reductive perturbation technique, the Korteweg de‐Vries (KdV) equation is derived. Later solving this equation, a solitary wave solution has been derived. These are mainly in astrophysical plasmas where changes of local charge density, temperature, and energy of particles produce considerable effects on the plasma system. The effects of supra‐thermality, density, and Mach number on solitary structures are studied in detail. The results show that the supra‐thermal index (κ) and ion to electron temperature ratio (σ) alters the regime where solitary waves may exist. While studying the solitary profile for different parametric variation some interesting conclusion can be drawn; it is shown that the solitary profile becomes flatter. This can be due to the thermal energy associated with the hot electrons. However, with the increase in ion density with respect to the cold electrons' density, the solitary waves become steeper and sharper. This is due to the comparatively heavier mass of ions. The density of cold electron also increases the solitary structures in a similar manner. The higher the density of cold electrons, sharper will be the profile. The above findings will be helpful in understanding many astrophysical phenomena and data obtained by space missions. For a further study, we keep the investigation of the formation of other kinds of stationary structures like shocks, double layers, etc.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</pub><doi>10.1002/ctpp.201900202</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4740-8823</orcidid><orcidid>https://orcid.org/0000-0003-4616-197X</orcidid><orcidid>https://orcid.org/0000-0001-9410-1619</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0863-1042
ispartof Contributions to plasma physics (1988), 2020-08, Vol.60 (7), p.n/a, Article 201900202
issn 0863-1042
1521-3986
language eng
recordid cdi_proquest_journals_2430028683
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Acoustic propagation
Acoustic waves
Charge density
Electron energy
Electron plasma
Energy charge
envelop soliton
forced KdV
Hot electrons
Ion density (concentration)
Ions
Kappa distributed ions
Mach number
Magnetospheres
Perturbation methods
Physical Sciences
Physics
Physics, Fluids & Plasmas
quantum hydrodynamic model
Science & Technology
Solitary waves
Space missions
Temperature ratio
Thermal energy
Wave propagation
title Formation of solitary structures and envelope solitons in electron acoustic wave in inner magnetosphere plasma with suprathermal ions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20solitary%20structures%20and%20envelope%20solitons%20in%20electron%20acoustic%20wave%20in%20inner%20magnetosphere%20plasma%20with%20suprathermal%20ions&rft.jtitle=Contributions%20to%20plasma%20physics%20(1988)&rft.au=Sarkar,%20Jit&rft.date=2020-08&rft.volume=60&rft.issue=7&rft.epage=n/a&rft.artnum=201900202&rft.issn=0863-1042&rft.eissn=1521-3986&rft_id=info:doi/10.1002/ctpp.201900202&rft_dat=%3Cproquest_wiley%3E2430028683%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430028683&rft_id=info:pmid/&rfr_iscdi=true