Temperature Dependence of High Frequency Irreversible Electroporation Evaluated in a 3D Tumor Model

Electroporation is a bioelectric phenomenon used to deliver target molecules into cells in vitro and irreversible electroporation (IRE) is an emerging cancer therapy used to treat inoperable tumors in situ . These phenomena are generally considered to be non-thermal in nature. In this study, a 3D tu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2020-08, Vol.48 (8), p.2233-2246
Hauptverfasser: Fesmire, Christopher C., Petrella, Ross A., Fogle, Callie A., Gerber, David A., Xing, Lei, Sano, Michael B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2246
container_issue 8
container_start_page 2233
container_title Annals of biomedical engineering
container_volume 48
creator Fesmire, Christopher C.
Petrella, Ross A.
Fogle, Callie A.
Gerber, David A.
Xing, Lei
Sano, Michael B.
description Electroporation is a bioelectric phenomenon used to deliver target molecules into cells in vitro and irreversible electroporation (IRE) is an emerging cancer therapy used to treat inoperable tumors in situ . These phenomena are generally considered to be non-thermal in nature. In this study, a 3D tumor model was used to investigate the correlation between temperature and the effectiveness of standard clinical IRE and high frequency (H-FIRE) protocols. It was found for human glioblastoma cells that in the range of 2 to 37 °C the H-FIRE lethal electric field threshold value, which describes the minimum electric field to cause cell death, is highly dependent on temperature. Increasing the initial temperature from 2 to 37 °C resulted in a significant decrease in lethal electric field threshold from 1168 to 507 V/cm and a 139% increase in ablation size for H-FIRE burst treatments. Standard clinical protocol IRE treatments resulted in a decrease in lethal threshold from 485 to 453 V/cm and a 7% increase in ablation size over the same temperature range. Similar results were found for pancreatic cancer cells which indicate that tissue temperature may be a significant factor affecting H-FIRE ablation size and treatment planning in vivo while lower temperatures may be useful in maintaining cell viability for transfection applications.
doi_str_mv 10.1007/s10439-019-02423-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429923362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429923362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-4f5688c86217dd8fefa369ffc6e813db5b2a8577e72c9164d15aa13f0ef927013</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyyQJdYBPxInXqI-aKUiNmVtucm4pErjYCet-vcYUmDHYjTSzL13RgehW0oeKCHpo6ck5jIiNBSLGY8OZ2hIk5RHUmTiHA0JkSQSUsQDdOX9lhBKM55cogFnMZGSsCHKV7BrwOm2c4An0EBdQJ0DtgbPy807njn46MLkiBfOwR6cL9cV4GkFeetsY4OztDWe7nXV6RYKXNZYYz7Bq25nHX6xBVTX6MLoysPNqY_Q22y6Gs-j5evzYvy0jHIeszaKTSKyLM8Eo2lRZAaM5kIakwvIKC_WyZrpLElTSFkuqYgLmmhNuSFgJEsJ5SN03-c2zoanfau2tnN1OKkCHikZ54IFFetVubPeOzCqceVOu6OiRH1xVT1XFbiqb67qEEx3p-huvYPi1_IDMgh4L_BhVW_A_d3-J_YTuN-D2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429923362</pqid></control><display><type>article</type><title>Temperature Dependence of High Frequency Irreversible Electroporation Evaluated in a 3D Tumor Model</title><source>SpringerNature Journals</source><creator>Fesmire, Christopher C. ; Petrella, Ross A. ; Fogle, Callie A. ; Gerber, David A. ; Xing, Lei ; Sano, Michael B.</creator><creatorcontrib>Fesmire, Christopher C. ; Petrella, Ross A. ; Fogle, Callie A. ; Gerber, David A. ; Xing, Lei ; Sano, Michael B.</creatorcontrib><description>Electroporation is a bioelectric phenomenon used to deliver target molecules into cells in vitro and irreversible electroporation (IRE) is an emerging cancer therapy used to treat inoperable tumors in situ . These phenomena are generally considered to be non-thermal in nature. In this study, a 3D tumor model was used to investigate the correlation between temperature and the effectiveness of standard clinical IRE and high frequency (H-FIRE) protocols. It was found for human glioblastoma cells that in the range of 2 to 37 °C the H-FIRE lethal electric field threshold value, which describes the minimum electric field to cause cell death, is highly dependent on temperature. Increasing the initial temperature from 2 to 37 °C resulted in a significant decrease in lethal electric field threshold from 1168 to 507 V/cm and a 139% increase in ablation size for H-FIRE burst treatments. Standard clinical protocol IRE treatments resulted in a decrease in lethal threshold from 485 to 453 V/cm and a 7% increase in ablation size over the same temperature range. Similar results were found for pancreatic cancer cells which indicate that tissue temperature may be a significant factor affecting H-FIRE ablation size and treatment planning in vivo while lower temperatures may be useful in maintaining cell viability for transfection applications.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-019-02423-w</identifier><identifier>PMID: 32409902</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Ablation ; Biochemistry ; Bioelectricity ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Brain cancer ; Cancer ; Cell death ; Cell viability ; Classical Mechanics ; Electric fields ; Electroporation ; Glioblastoma ; Glioblastoma cells ; High frequencies ; Low temperature ; Original Article ; Pancreatic cancer ; Temperature ; Temperature dependence ; Three dimensional models ; Transfection ; Tumors</subject><ispartof>Annals of biomedical engineering, 2020-08, Vol.48 (8), p.2233-2246</ispartof><rights>Biomedical Engineering Society 2019</rights><rights>Biomedical Engineering Society 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-4f5688c86217dd8fefa369ffc6e813db5b2a8577e72c9164d15aa13f0ef927013</citedby><cites>FETCH-LOGICAL-c342t-4f5688c86217dd8fefa369ffc6e813db5b2a8577e72c9164d15aa13f0ef927013</cites><orcidid>0000-0003-3823-5932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-019-02423-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-019-02423-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32409902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fesmire, Christopher C.</creatorcontrib><creatorcontrib>Petrella, Ross A.</creatorcontrib><creatorcontrib>Fogle, Callie A.</creatorcontrib><creatorcontrib>Gerber, David A.</creatorcontrib><creatorcontrib>Xing, Lei</creatorcontrib><creatorcontrib>Sano, Michael B.</creatorcontrib><title>Temperature Dependence of High Frequency Irreversible Electroporation Evaluated in a 3D Tumor Model</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Electroporation is a bioelectric phenomenon used to deliver target molecules into cells in vitro and irreversible electroporation (IRE) is an emerging cancer therapy used to treat inoperable tumors in situ . These phenomena are generally considered to be non-thermal in nature. In this study, a 3D tumor model was used to investigate the correlation between temperature and the effectiveness of standard clinical IRE and high frequency (H-FIRE) protocols. It was found for human glioblastoma cells that in the range of 2 to 37 °C the H-FIRE lethal electric field threshold value, which describes the minimum electric field to cause cell death, is highly dependent on temperature. Increasing the initial temperature from 2 to 37 °C resulted in a significant decrease in lethal electric field threshold from 1168 to 507 V/cm and a 139% increase in ablation size for H-FIRE burst treatments. Standard clinical protocol IRE treatments resulted in a decrease in lethal threshold from 485 to 453 V/cm and a 7% increase in ablation size over the same temperature range. Similar results were found for pancreatic cancer cells which indicate that tissue temperature may be a significant factor affecting H-FIRE ablation size and treatment planning in vivo while lower temperatures may be useful in maintaining cell viability for transfection applications.</description><subject>Ablation</subject><subject>Biochemistry</subject><subject>Bioelectricity</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Brain cancer</subject><subject>Cancer</subject><subject>Cell death</subject><subject>Cell viability</subject><subject>Classical Mechanics</subject><subject>Electric fields</subject><subject>Electroporation</subject><subject>Glioblastoma</subject><subject>Glioblastoma cells</subject><subject>High frequencies</subject><subject>Low temperature</subject><subject>Original Article</subject><subject>Pancreatic cancer</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Three dimensional models</subject><subject>Transfection</subject><subject>Tumors</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyyQJdYBPxInXqI-aKUiNmVtucm4pErjYCet-vcYUmDHYjTSzL13RgehW0oeKCHpo6ck5jIiNBSLGY8OZ2hIk5RHUmTiHA0JkSQSUsQDdOX9lhBKM55cogFnMZGSsCHKV7BrwOm2c4An0EBdQJ0DtgbPy807njn46MLkiBfOwR6cL9cV4GkFeetsY4OztDWe7nXV6RYKXNZYYz7Bq25nHX6xBVTX6MLoysPNqY_Q22y6Gs-j5evzYvy0jHIeszaKTSKyLM8Eo2lRZAaM5kIakwvIKC_WyZrpLElTSFkuqYgLmmhNuSFgJEsJ5SN03-c2zoanfau2tnN1OKkCHikZ54IFFetVubPeOzCqceVOu6OiRH1xVT1XFbiqb67qEEx3p-huvYPi1_IDMgh4L_BhVW_A_d3-J_YTuN-D2w</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Fesmire, Christopher C.</creator><creator>Petrella, Ross A.</creator><creator>Fogle, Callie A.</creator><creator>Gerber, David A.</creator><creator>Xing, Lei</creator><creator>Sano, Michael B.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3823-5932</orcidid></search><sort><creationdate>20200801</creationdate><title>Temperature Dependence of High Frequency Irreversible Electroporation Evaluated in a 3D Tumor Model</title><author>Fesmire, Christopher C. ; Petrella, Ross A. ; Fogle, Callie A. ; Gerber, David A. ; Xing, Lei ; Sano, Michael B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-4f5688c86217dd8fefa369ffc6e813db5b2a8577e72c9164d15aa13f0ef927013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>Biochemistry</topic><topic>Bioelectricity</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Brain cancer</topic><topic>Cancer</topic><topic>Cell death</topic><topic>Cell viability</topic><topic>Classical Mechanics</topic><topic>Electric fields</topic><topic>Electroporation</topic><topic>Glioblastoma</topic><topic>Glioblastoma cells</topic><topic>High frequencies</topic><topic>Low temperature</topic><topic>Original Article</topic><topic>Pancreatic cancer</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Three dimensional models</topic><topic>Transfection</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fesmire, Christopher C.</creatorcontrib><creatorcontrib>Petrella, Ross A.</creatorcontrib><creatorcontrib>Fogle, Callie A.</creatorcontrib><creatorcontrib>Gerber, David A.</creatorcontrib><creatorcontrib>Xing, Lei</creatorcontrib><creatorcontrib>Sano, Michael B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fesmire, Christopher C.</au><au>Petrella, Ross A.</au><au>Fogle, Callie A.</au><au>Gerber, David A.</au><au>Xing, Lei</au><au>Sano, Michael B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Dependence of High Frequency Irreversible Electroporation Evaluated in a 3D Tumor Model</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>48</volume><issue>8</issue><spage>2233</spage><epage>2246</epage><pages>2233-2246</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Electroporation is a bioelectric phenomenon used to deliver target molecules into cells in vitro and irreversible electroporation (IRE) is an emerging cancer therapy used to treat inoperable tumors in situ . These phenomena are generally considered to be non-thermal in nature. In this study, a 3D tumor model was used to investigate the correlation between temperature and the effectiveness of standard clinical IRE and high frequency (H-FIRE) protocols. It was found for human glioblastoma cells that in the range of 2 to 37 °C the H-FIRE lethal electric field threshold value, which describes the minimum electric field to cause cell death, is highly dependent on temperature. Increasing the initial temperature from 2 to 37 °C resulted in a significant decrease in lethal electric field threshold from 1168 to 507 V/cm and a 139% increase in ablation size for H-FIRE burst treatments. Standard clinical protocol IRE treatments resulted in a decrease in lethal threshold from 485 to 453 V/cm and a 7% increase in ablation size over the same temperature range. Similar results were found for pancreatic cancer cells which indicate that tissue temperature may be a significant factor affecting H-FIRE ablation size and treatment planning in vivo while lower temperatures may be useful in maintaining cell viability for transfection applications.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>32409902</pmid><doi>10.1007/s10439-019-02423-w</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3823-5932</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 2020-08, Vol.48 (8), p.2233-2246
issn 0090-6964
1573-9686
language eng
recordid cdi_proquest_journals_2429923362
source SpringerNature Journals
subjects Ablation
Biochemistry
Bioelectricity
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Brain cancer
Cancer
Cell death
Cell viability
Classical Mechanics
Electric fields
Electroporation
Glioblastoma
Glioblastoma cells
High frequencies
Low temperature
Original Article
Pancreatic cancer
Temperature
Temperature dependence
Three dimensional models
Transfection
Tumors
title Temperature Dependence of High Frequency Irreversible Electroporation Evaluated in a 3D Tumor Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Dependence%20of%20High%20Frequency%20Irreversible%20Electroporation%20Evaluated%20in%20a%203D%20Tumor%20Model&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Fesmire,%20Christopher%20C.&rft.date=2020-08-01&rft.volume=48&rft.issue=8&rft.spage=2233&rft.epage=2246&rft.pages=2233-2246&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-019-02423-w&rft_dat=%3Cproquest_cross%3E2429923362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429923362&rft_id=info:pmid/32409902&rfr_iscdi=true