Temperature Dependence of High Frequency Irreversible Electroporation Evaluated in a 3D Tumor Model
Electroporation is a bioelectric phenomenon used to deliver target molecules into cells in vitro and irreversible electroporation (IRE) is an emerging cancer therapy used to treat inoperable tumors in situ . These phenomena are generally considered to be non-thermal in nature. In this study, a 3D tu...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2020-08, Vol.48 (8), p.2233-2246 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2246 |
---|---|
container_issue | 8 |
container_start_page | 2233 |
container_title | Annals of biomedical engineering |
container_volume | 48 |
creator | Fesmire, Christopher C. Petrella, Ross A. Fogle, Callie A. Gerber, David A. Xing, Lei Sano, Michael B. |
description | Electroporation is a bioelectric phenomenon used to deliver target molecules into cells
in vitro
and irreversible electroporation (IRE) is an emerging cancer therapy used to treat inoperable tumors
in situ
. These phenomena are generally considered to be non-thermal in nature. In this study, a 3D tumor model was used to investigate the correlation between temperature and the effectiveness of standard clinical IRE and high frequency (H-FIRE) protocols. It was found for human glioblastoma cells that in the range of 2 to 37 °C the H-FIRE lethal electric field threshold value, which describes the minimum electric field to cause cell death, is highly dependent on temperature. Increasing the initial temperature from 2 to 37 °C resulted in a significant decrease in lethal electric field threshold from 1168 to 507 V/cm and a 139% increase in ablation size for H-FIRE burst treatments. Standard clinical protocol IRE treatments resulted in a decrease in lethal threshold from 485 to 453 V/cm and a 7% increase in ablation size over the same temperature range. Similar results were found for pancreatic cancer cells which indicate that tissue temperature may be a significant factor affecting H-FIRE ablation size and treatment planning
in vivo
while lower temperatures may be useful in maintaining cell viability for transfection applications. |
doi_str_mv | 10.1007/s10439-019-02423-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429923362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429923362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-4f5688c86217dd8fefa369ffc6e813db5b2a8577e72c9164d15aa13f0ef927013</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyyQJdYBPxInXqI-aKUiNmVtucm4pErjYCet-vcYUmDHYjTSzL13RgehW0oeKCHpo6ck5jIiNBSLGY8OZ2hIk5RHUmTiHA0JkSQSUsQDdOX9lhBKM55cogFnMZGSsCHKV7BrwOm2c4An0EBdQJ0DtgbPy807njn46MLkiBfOwR6cL9cV4GkFeetsY4OztDWe7nXV6RYKXNZYYz7Bq25nHX6xBVTX6MLoysPNqY_Q22y6Gs-j5evzYvy0jHIeszaKTSKyLM8Eo2lRZAaM5kIakwvIKC_WyZrpLElTSFkuqYgLmmhNuSFgJEsJ5SN03-c2zoanfau2tnN1OKkCHikZ54IFFetVubPeOzCqceVOu6OiRH1xVT1XFbiqb67qEEx3p-huvYPi1_IDMgh4L_BhVW_A_d3-J_YTuN-D2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429923362</pqid></control><display><type>article</type><title>Temperature Dependence of High Frequency Irreversible Electroporation Evaluated in a 3D Tumor Model</title><source>SpringerNature Journals</source><creator>Fesmire, Christopher C. ; Petrella, Ross A. ; Fogle, Callie A. ; Gerber, David A. ; Xing, Lei ; Sano, Michael B.</creator><creatorcontrib>Fesmire, Christopher C. ; Petrella, Ross A. ; Fogle, Callie A. ; Gerber, David A. ; Xing, Lei ; Sano, Michael B.</creatorcontrib><description>Electroporation is a bioelectric phenomenon used to deliver target molecules into cells
in vitro
and irreversible electroporation (IRE) is an emerging cancer therapy used to treat inoperable tumors
in situ
. These phenomena are generally considered to be non-thermal in nature. In this study, a 3D tumor model was used to investigate the correlation between temperature and the effectiveness of standard clinical IRE and high frequency (H-FIRE) protocols. It was found for human glioblastoma cells that in the range of 2 to 37 °C the H-FIRE lethal electric field threshold value, which describes the minimum electric field to cause cell death, is highly dependent on temperature. Increasing the initial temperature from 2 to 37 °C resulted in a significant decrease in lethal electric field threshold from 1168 to 507 V/cm and a 139% increase in ablation size for H-FIRE burst treatments. Standard clinical protocol IRE treatments resulted in a decrease in lethal threshold from 485 to 453 V/cm and a 7% increase in ablation size over the same temperature range. Similar results were found for pancreatic cancer cells which indicate that tissue temperature may be a significant factor affecting H-FIRE ablation size and treatment planning
in vivo
while lower temperatures may be useful in maintaining cell viability for transfection applications.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-019-02423-w</identifier><identifier>PMID: 32409902</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Ablation ; Biochemistry ; Bioelectricity ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Brain cancer ; Cancer ; Cell death ; Cell viability ; Classical Mechanics ; Electric fields ; Electroporation ; Glioblastoma ; Glioblastoma cells ; High frequencies ; Low temperature ; Original Article ; Pancreatic cancer ; Temperature ; Temperature dependence ; Three dimensional models ; Transfection ; Tumors</subject><ispartof>Annals of biomedical engineering, 2020-08, Vol.48 (8), p.2233-2246</ispartof><rights>Biomedical Engineering Society 2019</rights><rights>Biomedical Engineering Society 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-4f5688c86217dd8fefa369ffc6e813db5b2a8577e72c9164d15aa13f0ef927013</citedby><cites>FETCH-LOGICAL-c342t-4f5688c86217dd8fefa369ffc6e813db5b2a8577e72c9164d15aa13f0ef927013</cites><orcidid>0000-0003-3823-5932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-019-02423-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-019-02423-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32409902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fesmire, Christopher C.</creatorcontrib><creatorcontrib>Petrella, Ross A.</creatorcontrib><creatorcontrib>Fogle, Callie A.</creatorcontrib><creatorcontrib>Gerber, David A.</creatorcontrib><creatorcontrib>Xing, Lei</creatorcontrib><creatorcontrib>Sano, Michael B.</creatorcontrib><title>Temperature Dependence of High Frequency Irreversible Electroporation Evaluated in a 3D Tumor Model</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Electroporation is a bioelectric phenomenon used to deliver target molecules into cells
in vitro
and irreversible electroporation (IRE) is an emerging cancer therapy used to treat inoperable tumors
in situ
. These phenomena are generally considered to be non-thermal in nature. In this study, a 3D tumor model was used to investigate the correlation between temperature and the effectiveness of standard clinical IRE and high frequency (H-FIRE) protocols. It was found for human glioblastoma cells that in the range of 2 to 37 °C the H-FIRE lethal electric field threshold value, which describes the minimum electric field to cause cell death, is highly dependent on temperature. Increasing the initial temperature from 2 to 37 °C resulted in a significant decrease in lethal electric field threshold from 1168 to 507 V/cm and a 139% increase in ablation size for H-FIRE burst treatments. Standard clinical protocol IRE treatments resulted in a decrease in lethal threshold from 485 to 453 V/cm and a 7% increase in ablation size over the same temperature range. Similar results were found for pancreatic cancer cells which indicate that tissue temperature may be a significant factor affecting H-FIRE ablation size and treatment planning
in vivo
while lower temperatures may be useful in maintaining cell viability for transfection applications.</description><subject>Ablation</subject><subject>Biochemistry</subject><subject>Bioelectricity</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Brain cancer</subject><subject>Cancer</subject><subject>Cell death</subject><subject>Cell viability</subject><subject>Classical Mechanics</subject><subject>Electric fields</subject><subject>Electroporation</subject><subject>Glioblastoma</subject><subject>Glioblastoma cells</subject><subject>High frequencies</subject><subject>Low temperature</subject><subject>Original Article</subject><subject>Pancreatic cancer</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Three dimensional models</subject><subject>Transfection</subject><subject>Tumors</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyyQJdYBPxInXqI-aKUiNmVtucm4pErjYCet-vcYUmDHYjTSzL13RgehW0oeKCHpo6ck5jIiNBSLGY8OZ2hIk5RHUmTiHA0JkSQSUsQDdOX9lhBKM55cogFnMZGSsCHKV7BrwOm2c4An0EBdQJ0DtgbPy807njn46MLkiBfOwR6cL9cV4GkFeetsY4OztDWe7nXV6RYKXNZYYz7Bq25nHX6xBVTX6MLoysPNqY_Q22y6Gs-j5evzYvy0jHIeszaKTSKyLM8Eo2lRZAaM5kIakwvIKC_WyZrpLElTSFkuqYgLmmhNuSFgJEsJ5SN03-c2zoanfau2tnN1OKkCHikZ54IFFetVubPeOzCqceVOu6OiRH1xVT1XFbiqb67qEEx3p-huvYPi1_IDMgh4L_BhVW_A_d3-J_YTuN-D2w</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Fesmire, Christopher C.</creator><creator>Petrella, Ross A.</creator><creator>Fogle, Callie A.</creator><creator>Gerber, David A.</creator><creator>Xing, Lei</creator><creator>Sano, Michael B.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3823-5932</orcidid></search><sort><creationdate>20200801</creationdate><title>Temperature Dependence of High Frequency Irreversible Electroporation Evaluated in a 3D Tumor Model</title><author>Fesmire, Christopher C. ; Petrella, Ross A. ; Fogle, Callie A. ; Gerber, David A. ; Xing, Lei ; Sano, Michael B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-4f5688c86217dd8fefa369ffc6e813db5b2a8577e72c9164d15aa13f0ef927013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>Biochemistry</topic><topic>Bioelectricity</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Brain cancer</topic><topic>Cancer</topic><topic>Cell death</topic><topic>Cell viability</topic><topic>Classical Mechanics</topic><topic>Electric fields</topic><topic>Electroporation</topic><topic>Glioblastoma</topic><topic>Glioblastoma cells</topic><topic>High frequencies</topic><topic>Low temperature</topic><topic>Original Article</topic><topic>Pancreatic cancer</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Three dimensional models</topic><topic>Transfection</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fesmire, Christopher C.</creatorcontrib><creatorcontrib>Petrella, Ross A.</creatorcontrib><creatorcontrib>Fogle, Callie A.</creatorcontrib><creatorcontrib>Gerber, David A.</creatorcontrib><creatorcontrib>Xing, Lei</creatorcontrib><creatorcontrib>Sano, Michael B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fesmire, Christopher C.</au><au>Petrella, Ross A.</au><au>Fogle, Callie A.</au><au>Gerber, David A.</au><au>Xing, Lei</au><au>Sano, Michael B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Dependence of High Frequency Irreversible Electroporation Evaluated in a 3D Tumor Model</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>48</volume><issue>8</issue><spage>2233</spage><epage>2246</epage><pages>2233-2246</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Electroporation is a bioelectric phenomenon used to deliver target molecules into cells
in vitro
and irreversible electroporation (IRE) is an emerging cancer therapy used to treat inoperable tumors
in situ
. These phenomena are generally considered to be non-thermal in nature. In this study, a 3D tumor model was used to investigate the correlation between temperature and the effectiveness of standard clinical IRE and high frequency (H-FIRE) protocols. It was found for human glioblastoma cells that in the range of 2 to 37 °C the H-FIRE lethal electric field threshold value, which describes the minimum electric field to cause cell death, is highly dependent on temperature. Increasing the initial temperature from 2 to 37 °C resulted in a significant decrease in lethal electric field threshold from 1168 to 507 V/cm and a 139% increase in ablation size for H-FIRE burst treatments. Standard clinical protocol IRE treatments resulted in a decrease in lethal threshold from 485 to 453 V/cm and a 7% increase in ablation size over the same temperature range. Similar results were found for pancreatic cancer cells which indicate that tissue temperature may be a significant factor affecting H-FIRE ablation size and treatment planning
in vivo
while lower temperatures may be useful in maintaining cell viability for transfection applications.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>32409902</pmid><doi>10.1007/s10439-019-02423-w</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3823-5932</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2020-08, Vol.48 (8), p.2233-2246 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_proquest_journals_2429923362 |
source | SpringerNature Journals |
subjects | Ablation Biochemistry Bioelectricity Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Brain cancer Cancer Cell death Cell viability Classical Mechanics Electric fields Electroporation Glioblastoma Glioblastoma cells High frequencies Low temperature Original Article Pancreatic cancer Temperature Temperature dependence Three dimensional models Transfection Tumors |
title | Temperature Dependence of High Frequency Irreversible Electroporation Evaluated in a 3D Tumor Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Dependence%20of%20High%20Frequency%20Irreversible%20Electroporation%20Evaluated%20in%20a%203D%20Tumor%20Model&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Fesmire,%20Christopher%20C.&rft.date=2020-08-01&rft.volume=48&rft.issue=8&rft.spage=2233&rft.epage=2246&rft.pages=2233-2246&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-019-02423-w&rft_dat=%3Cproquest_cross%3E2429923362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429923362&rft_id=info:pmid/32409902&rfr_iscdi=true |