A comprehensive probabilistic analysis of approximate SIR‐type epidemiological models via full randomized discrete‐time Markov chain formulation with applications

This paper provides a comprehensive probabilistic analysis of a full randomization of approximate SIR‐type epidemiological models based on discrete‐time Markov chain formulation. The randomization is performed by assuming that all input data (initial conditions, the contagion, and recovering rates i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-09, Vol.43 (14), p.8204-8222
Hauptverfasser: Cortés, J.‐C., El‐Labany, S.K., Navarro‐Quiles, A., Selim, Mustafa M., Slama, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8222
container_issue 14
container_start_page 8204
container_title Mathematical methods in the applied sciences
container_volume 43
creator Cortés, J.‐C.
El‐Labany, S.K.
Navarro‐Quiles, A.
Selim, Mustafa M.
Slama, H.
description This paper provides a comprehensive probabilistic analysis of a full randomization of approximate SIR‐type epidemiological models based on discrete‐time Markov chain formulation. The randomization is performed by assuming that all input data (initial conditions, the contagion, and recovering rates involved in the transition matrix) are random variables instead of deterministic constants. In the first part of the paper, we determine explicit expressions for the so called first probability density function of each subpopulation identified as the corresponding states of the Markov chain (susceptible, infected, and recovered) in terms of the probability density function of each input random variable. Afterwards, we obtain the probability density functions of the times until a given proportion of the population remains susceptible, infected, and recovered, respectively. The theoretical analysis is completed by computing explicit expressions of important randomized epidemiological quantities, namely, the basic reproduction number, the effective reproduction number, and the herd immunity threshold. The study is conducted under very general assumptions and taking extensive advantage of the random variable transformation technique. The second part of the paper is devoted to apply our theoretical findings to describe the dynamics of the pandemic influenza in Egypt using simulated data excerpted from the literature. The simulations are complemented with valuable information, which is seldom displayed in epidemiological models. In spite of the nonlinear mathematical nature of SIR epidemiological model, our results show a strong agreement with the approximation via an appropriate randomized Markov chain. A justification in this regard is discussed.
doi_str_mv 10.1002/mma.6482
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429908512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429908512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-f5fe865e61cc6147fab00034ef053dd29528afe71c11424dcfc9ce627bd8e68a3</originalsourceid><addsrcrecordid>eNp1kUFu2zAQRYkiAeo4AXoEAt1kI5ekJVlaGkGaGLARIG3XAk0O63FJUSFlO86qR-gperCcJFTcbVcDzLyZwf-fkE-cTThj4otzclLmlfhARpzVdcbzWXlGRozPWJYLnn8kFzFuGWMV52JE_s6p8q4LsIE24h5oF_xartFi7FFR2Up7jBipN1R2afaMTvZAvy0eX3__6Y8dUOhQg0Nv_U9U0lLnNdhI9yip2VlLg2y1d_gCmmqMKkAPwyo6oCsZfvk9VRuJLTU-uJ2VPfqWHrDfDP9sujg04iU5N9JGuPpXx-TH19vvN_fZ8uFucTNfZkrUU5GZwkBVFlBypcqk3Mh1UjrNwbBiqrWoC1FJAzOuOM9FrpVRtYJSzNa6grKS0zH5fLqbpD7tIPbN1u9CMiE2Ihd1zaqCi0RdnygVfIwBTNOF5Es4Npw1QwpNSqEZUkhodkIPaOH4X65Zrebv_BvJfY_F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429908512</pqid></control><display><type>article</type><title>A comprehensive probabilistic analysis of approximate SIR‐type epidemiological models via full randomized discrete‐time Markov chain formulation with applications</title><source>Access via Wiley Online Library</source><creator>Cortés, J.‐C. ; El‐Labany, S.K. ; Navarro‐Quiles, A. ; Selim, Mustafa M. ; Slama, H.</creator><creatorcontrib>Cortés, J.‐C. ; El‐Labany, S.K. ; Navarro‐Quiles, A. ; Selim, Mustafa M. ; Slama, H.</creatorcontrib><description>This paper provides a comprehensive probabilistic analysis of a full randomization of approximate SIR‐type epidemiological models based on discrete‐time Markov chain formulation. The randomization is performed by assuming that all input data (initial conditions, the contagion, and recovering rates involved in the transition matrix) are random variables instead of deterministic constants. In the first part of the paper, we determine explicit expressions for the so called first probability density function of each subpopulation identified as the corresponding states of the Markov chain (susceptible, infected, and recovered) in terms of the probability density function of each input random variable. Afterwards, we obtain the probability density functions of the times until a given proportion of the population remains susceptible, infected, and recovered, respectively. The theoretical analysis is completed by computing explicit expressions of important randomized epidemiological quantities, namely, the basic reproduction number, the effective reproduction number, and the herd immunity threshold. The study is conducted under very general assumptions and taking extensive advantage of the random variable transformation technique. The second part of the paper is devoted to apply our theoretical findings to describe the dynamics of the pandemic influenza in Egypt using simulated data excerpted from the literature. The simulations are complemented with valuable information, which is seldom displayed in epidemiological models. In spite of the nonlinear mathematical nature of SIR epidemiological model, our results show a strong agreement with the approximation via an appropriate randomized Markov chain. A justification in this regard is discussed.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6482</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Computer simulation ; Corresponding states ; Epidemiology ; first probability density function ; Initial conditions ; Markov analysis ; Markov chains ; Matrix methods ; Probabilistic analysis ; Probability density functions ; random variable transformation technique ; Random variables ; Randomization ; randomized discrete‐time Markov chains ; simulations ; SIR epidemiological model ; Statistical analysis</subject><ispartof>Mathematical methods in the applied sciences, 2020-09, Vol.43 (14), p.8204-8222</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-f5fe865e61cc6147fab00034ef053dd29528afe71c11424dcfc9ce627bd8e68a3</citedby><cites>FETCH-LOGICAL-c2932-f5fe865e61cc6147fab00034ef053dd29528afe71c11424dcfc9ce627bd8e68a3</cites><orcidid>0000-0002-6528-2155 ; 0000-0003-3800-072X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6482$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6482$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Cortés, J.‐C.</creatorcontrib><creatorcontrib>El‐Labany, S.K.</creatorcontrib><creatorcontrib>Navarro‐Quiles, A.</creatorcontrib><creatorcontrib>Selim, Mustafa M.</creatorcontrib><creatorcontrib>Slama, H.</creatorcontrib><title>A comprehensive probabilistic analysis of approximate SIR‐type epidemiological models via full randomized discrete‐time Markov chain formulation with applications</title><title>Mathematical methods in the applied sciences</title><description>This paper provides a comprehensive probabilistic analysis of a full randomization of approximate SIR‐type epidemiological models based on discrete‐time Markov chain formulation. The randomization is performed by assuming that all input data (initial conditions, the contagion, and recovering rates involved in the transition matrix) are random variables instead of deterministic constants. In the first part of the paper, we determine explicit expressions for the so called first probability density function of each subpopulation identified as the corresponding states of the Markov chain (susceptible, infected, and recovered) in terms of the probability density function of each input random variable. Afterwards, we obtain the probability density functions of the times until a given proportion of the population remains susceptible, infected, and recovered, respectively. The theoretical analysis is completed by computing explicit expressions of important randomized epidemiological quantities, namely, the basic reproduction number, the effective reproduction number, and the herd immunity threshold. The study is conducted under very general assumptions and taking extensive advantage of the random variable transformation technique. The second part of the paper is devoted to apply our theoretical findings to describe the dynamics of the pandemic influenza in Egypt using simulated data excerpted from the literature. The simulations are complemented with valuable information, which is seldom displayed in epidemiological models. In spite of the nonlinear mathematical nature of SIR epidemiological model, our results show a strong agreement with the approximation via an appropriate randomized Markov chain. A justification in this regard is discussed.</description><subject>Computer simulation</subject><subject>Corresponding states</subject><subject>Epidemiology</subject><subject>first probability density function</subject><subject>Initial conditions</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Matrix methods</subject><subject>Probabilistic analysis</subject><subject>Probability density functions</subject><subject>random variable transformation technique</subject><subject>Random variables</subject><subject>Randomization</subject><subject>randomized discrete‐time Markov chains</subject><subject>simulations</subject><subject>SIR epidemiological model</subject><subject>Statistical analysis</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kUFu2zAQRYkiAeo4AXoEAt1kI5ekJVlaGkGaGLARIG3XAk0O63FJUSFlO86qR-gperCcJFTcbVcDzLyZwf-fkE-cTThj4otzclLmlfhARpzVdcbzWXlGRozPWJYLnn8kFzFuGWMV52JE_s6p8q4LsIE24h5oF_xartFi7FFR2Up7jBipN1R2afaMTvZAvy0eX3__6Y8dUOhQg0Nv_U9U0lLnNdhI9yip2VlLg2y1d_gCmmqMKkAPwyo6oCsZfvk9VRuJLTU-uJ2VPfqWHrDfDP9sujg04iU5N9JGuPpXx-TH19vvN_fZ8uFucTNfZkrUU5GZwkBVFlBypcqk3Mh1UjrNwbBiqrWoC1FJAzOuOM9FrpVRtYJSzNa6grKS0zH5fLqbpD7tIPbN1u9CMiE2Ihd1zaqCi0RdnygVfIwBTNOF5Es4Npw1QwpNSqEZUkhodkIPaOH4X65Zrebv_BvJfY_F</recordid><startdate>20200930</startdate><enddate>20200930</enddate><creator>Cortés, J.‐C.</creator><creator>El‐Labany, S.K.</creator><creator>Navarro‐Quiles, A.</creator><creator>Selim, Mustafa M.</creator><creator>Slama, H.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-6528-2155</orcidid><orcidid>https://orcid.org/0000-0003-3800-072X</orcidid></search><sort><creationdate>20200930</creationdate><title>A comprehensive probabilistic analysis of approximate SIR‐type epidemiological models via full randomized discrete‐time Markov chain formulation with applications</title><author>Cortés, J.‐C. ; El‐Labany, S.K. ; Navarro‐Quiles, A. ; Selim, Mustafa M. ; Slama, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-f5fe865e61cc6147fab00034ef053dd29528afe71c11424dcfc9ce627bd8e68a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Corresponding states</topic><topic>Epidemiology</topic><topic>first probability density function</topic><topic>Initial conditions</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Matrix methods</topic><topic>Probabilistic analysis</topic><topic>Probability density functions</topic><topic>random variable transformation technique</topic><topic>Random variables</topic><topic>Randomization</topic><topic>randomized discrete‐time Markov chains</topic><topic>simulations</topic><topic>SIR epidemiological model</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cortés, J.‐C.</creatorcontrib><creatorcontrib>El‐Labany, S.K.</creatorcontrib><creatorcontrib>Navarro‐Quiles, A.</creatorcontrib><creatorcontrib>Selim, Mustafa M.</creatorcontrib><creatorcontrib>Slama, H.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cortés, J.‐C.</au><au>El‐Labany, S.K.</au><au>Navarro‐Quiles, A.</au><au>Selim, Mustafa M.</au><au>Slama, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive probabilistic analysis of approximate SIR‐type epidemiological models via full randomized discrete‐time Markov chain formulation with applications</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-09-30</date><risdate>2020</risdate><volume>43</volume><issue>14</issue><spage>8204</spage><epage>8222</epage><pages>8204-8222</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This paper provides a comprehensive probabilistic analysis of a full randomization of approximate SIR‐type epidemiological models based on discrete‐time Markov chain formulation. The randomization is performed by assuming that all input data (initial conditions, the contagion, and recovering rates involved in the transition matrix) are random variables instead of deterministic constants. In the first part of the paper, we determine explicit expressions for the so called first probability density function of each subpopulation identified as the corresponding states of the Markov chain (susceptible, infected, and recovered) in terms of the probability density function of each input random variable. Afterwards, we obtain the probability density functions of the times until a given proportion of the population remains susceptible, infected, and recovered, respectively. The theoretical analysis is completed by computing explicit expressions of important randomized epidemiological quantities, namely, the basic reproduction number, the effective reproduction number, and the herd immunity threshold. The study is conducted under very general assumptions and taking extensive advantage of the random variable transformation technique. The second part of the paper is devoted to apply our theoretical findings to describe the dynamics of the pandemic influenza in Egypt using simulated data excerpted from the literature. The simulations are complemented with valuable information, which is seldom displayed in epidemiological models. In spite of the nonlinear mathematical nature of SIR epidemiological model, our results show a strong agreement with the approximation via an appropriate randomized Markov chain. A justification in this regard is discussed.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6482</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6528-2155</orcidid><orcidid>https://orcid.org/0000-0003-3800-072X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2020-09, Vol.43 (14), p.8204-8222
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2429908512
source Access via Wiley Online Library
subjects Computer simulation
Corresponding states
Epidemiology
first probability density function
Initial conditions
Markov analysis
Markov chains
Matrix methods
Probabilistic analysis
Probability density functions
random variable transformation technique
Random variables
Randomization
randomized discrete‐time Markov chains
simulations
SIR epidemiological model
Statistical analysis
title A comprehensive probabilistic analysis of approximate SIR‐type epidemiological models via full randomized discrete‐time Markov chain formulation with applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20probabilistic%20analysis%20of%20approximate%20SIR%E2%80%90type%20epidemiological%20models%20via%20full%20randomized%20discrete%E2%80%90time%20Markov%20chain%20formulation%20with%20applications&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Cort%C3%A9s,%20J.%E2%80%90C.&rft.date=2020-09-30&rft.volume=43&rft.issue=14&rft.spage=8204&rft.epage=8222&rft.pages=8204-8222&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6482&rft_dat=%3Cproquest_cross%3E2429908512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429908512&rft_id=info:pmid/&rfr_iscdi=true