Giant magnetic field effects in donor–acceptor triads: On the charge separation and recombination dynamics in triarylamine–naphthalenediimide triads with bis-diyprrinato-palladium(II), porphodimethenato-palladium(II), and palladium(II)–porphyrin photosensitizers

A series of triads consisting of a triarylamine donor, a naphthalenediimide acceptor, and a palladium photosensitizer bridge was investigated for the photoinduced electron transfer processes and the spin chemistry involved. In this series, the ligand in the palladium photosensitizer was varied from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-08, Vol.153 (5), p.054306-054306
Hauptverfasser: Riese, Stefan, Brand, Jessica S., Mims, David, Holzapfel, Marco, Lukzen, Nikita N., Steiner, Ulrich E., Lambert, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 054306
container_issue 5
container_start_page 054306
container_title The Journal of chemical physics
container_volume 153
creator Riese, Stefan
Brand, Jessica S.
Mims, David
Holzapfel, Marco
Lukzen, Nikita N.
Steiner, Ulrich E.
Lambert, Christoph
description A series of triads consisting of a triarylamine donor, a naphthalenediimide acceptor, and a palladium photosensitizer bridge was investigated for the photoinduced electron transfer processes and the spin chemistry involved. In this series, the ligand in the palladium photosensitizer was varied from bis-dipyrrinato to porphodimethenato and to a porphyrin. With the porphyrin photosensitizer, no charge separated state could be reached. This is caused by the direct relaxation of the excited photosensitizer to the ground state by intersystem crossing. The bis-dipyrrinato-palladium photosensitizer gave only a little yield (7%) of the charge separated state, which is due to the population of a metal centered triplet state and a concomitant geometrical rearrangement to a disphenoidal coordination sphere. This state relaxes rapidly to the ground state. In contrast, in the porphodimethenato-palladium triads, a long lived (μs to ms) charge separated state could be generated in high quantum yields (66%–74%) because, here, the population of a triplet metal centered state is inhibited by geometrical constraints. The magnetic field dependent transient absorption measurement of one of the porphodimethenato triads revealed a giant magnetic field effect by a factor of 26 on the signal amplitude of the charge separated state. This is the consequence of a magnetic field dependent triplet–singlet interconversion that inhibits the fast decay of the charge separated triplet state through the singlet recombination channel. A systematic comparative analysis of the spin-dependent kinetics in terms of three classical and one fully quantum theoretical methods is provided, shedding light on the pros and cons of each of them.
doi_str_mv 10.1063/5.0013941
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2429907999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429907999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-e98bcde922c9e319c73cba3f83c125c055ae4c9ee9b793724ebb33a5218c2a163</originalsourceid><addsrcrecordid>eNqdks9u1DAQxgMqEkvLgTewxKVFpPjPJllzqyooK1XqBc6RY0-aqRLb2F6q5cQ79A37JDi7K6EiTkiWLM_85ptP4ymKN4yeM1qLD9U5pUzIJXteLBhdybKpJT0qFpRyVsqa1i-LVzHe0Uw1fLl4dnKFyiYyqVsLCTXpEUZDoO9Bp0jQEuOsC4-_HpTW4JMLJAVUJn4kN5akAYgeVLgFEsGroBI6S5Q1JIB2U4d2HzFbqybUO725PGzH_LaQZa3yQxrUCBYM4oQGDg3IPaaBdBhLg1sfwqzlSq_GURncTKfr9dl74l3wgzM4QbbyL2D28iSUW-6KtlmQ5NrkItiICX9CiCfFi16NEV4f7uPi2-dPXy-_lNc3V-vLi-tSi5qmEuSq0wYk51qCYFI3QndK9CuhGa80rSoFy5wC2TVS5DFD1wmhKs5WmitWi-PidK_rg_u-gZjaCaOGbNOC28SWL0U-Iktn9O1f6J3bBJvdZYpLSRspZ-psT-ngYgzQtz7glOfcMtrOe9FW7WEvMvtuz0aNafc__wf_cOEP2HrTi9_RONBz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429907999</pqid></control><display><type>article</type><title>Giant magnetic field effects in donor–acceptor triads: On the charge separation and recombination dynamics in triarylamine–naphthalenediimide triads with bis-diyprrinato-palladium(II), porphodimethenato-palladium(II), and palladium(II)–porphyrin photosensitizers</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Riese, Stefan ; Brand, Jessica S. ; Mims, David ; Holzapfel, Marco ; Lukzen, Nikita N. ; Steiner, Ulrich E. ; Lambert, Christoph</creator><creatorcontrib>Riese, Stefan ; Brand, Jessica S. ; Mims, David ; Holzapfel, Marco ; Lukzen, Nikita N. ; Steiner, Ulrich E. ; Lambert, Christoph</creatorcontrib><description>A series of triads consisting of a triarylamine donor, a naphthalenediimide acceptor, and a palladium photosensitizer bridge was investigated for the photoinduced electron transfer processes and the spin chemistry involved. In this series, the ligand in the palladium photosensitizer was varied from bis-dipyrrinato to porphodimethenato and to a porphyrin. With the porphyrin photosensitizer, no charge separated state could be reached. This is caused by the direct relaxation of the excited photosensitizer to the ground state by intersystem crossing. The bis-dipyrrinato-palladium photosensitizer gave only a little yield (7%) of the charge separated state, which is due to the population of a metal centered triplet state and a concomitant geometrical rearrangement to a disphenoidal coordination sphere. This state relaxes rapidly to the ground state. In contrast, in the porphodimethenato-palladium triads, a long lived (μs to ms) charge separated state could be generated in high quantum yields (66%–74%) because, here, the population of a triplet metal centered state is inhibited by geometrical constraints. The magnetic field dependent transient absorption measurement of one of the porphodimethenato triads revealed a giant magnetic field effect by a factor of 26 on the signal amplitude of the charge separated state. This is the consequence of a magnetic field dependent triplet–singlet interconversion that inhibits the fast decay of the charge separated triplet state through the singlet recombination channel. A systematic comparative analysis of the spin-dependent kinetics in terms of three classical and one fully quantum theoretical methods is provided, shedding light on the pros and cons of each of them.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0013941</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Atomic energy levels ; Decay rate ; Electron spin ; Electron transfer ; Ground state ; Magnetic fields ; Palladium ; Physics ; Reaction kinetics</subject><ispartof>The Journal of chemical physics, 2020-08, Vol.153 (5), p.054306-054306</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-e98bcde922c9e319c73cba3f83c125c055ae4c9ee9b793724ebb33a5218c2a163</citedby><cites>FETCH-LOGICAL-c360t-e98bcde922c9e319c73cba3f83c125c055ae4c9ee9b793724ebb33a5218c2a163</cites><orcidid>0000-0001-5176-0948 ; 0000-0002-9652-9165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0013941$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27923,27924,76155</link.rule.ids></links><search><creatorcontrib>Riese, Stefan</creatorcontrib><creatorcontrib>Brand, Jessica S.</creatorcontrib><creatorcontrib>Mims, David</creatorcontrib><creatorcontrib>Holzapfel, Marco</creatorcontrib><creatorcontrib>Lukzen, Nikita N.</creatorcontrib><creatorcontrib>Steiner, Ulrich E.</creatorcontrib><creatorcontrib>Lambert, Christoph</creatorcontrib><title>Giant magnetic field effects in donor–acceptor triads: On the charge separation and recombination dynamics in triarylamine–naphthalenediimide triads with bis-diyprrinato-palladium(II), porphodimethenato-palladium(II), and palladium(II)–porphyrin photosensitizers</title><title>The Journal of chemical physics</title><description>A series of triads consisting of a triarylamine donor, a naphthalenediimide acceptor, and a palladium photosensitizer bridge was investigated for the photoinduced electron transfer processes and the spin chemistry involved. In this series, the ligand in the palladium photosensitizer was varied from bis-dipyrrinato to porphodimethenato and to a porphyrin. With the porphyrin photosensitizer, no charge separated state could be reached. This is caused by the direct relaxation of the excited photosensitizer to the ground state by intersystem crossing. The bis-dipyrrinato-palladium photosensitizer gave only a little yield (7%) of the charge separated state, which is due to the population of a metal centered triplet state and a concomitant geometrical rearrangement to a disphenoidal coordination sphere. This state relaxes rapidly to the ground state. In contrast, in the porphodimethenato-palladium triads, a long lived (μs to ms) charge separated state could be generated in high quantum yields (66%–74%) because, here, the population of a triplet metal centered state is inhibited by geometrical constraints. The magnetic field dependent transient absorption measurement of one of the porphodimethenato triads revealed a giant magnetic field effect by a factor of 26 on the signal amplitude of the charge separated state. This is the consequence of a magnetic field dependent triplet–singlet interconversion that inhibits the fast decay of the charge separated triplet state through the singlet recombination channel. A systematic comparative analysis of the spin-dependent kinetics in terms of three classical and one fully quantum theoretical methods is provided, shedding light on the pros and cons of each of them.</description><subject>Atomic energy levels</subject><subject>Decay rate</subject><subject>Electron spin</subject><subject>Electron transfer</subject><subject>Ground state</subject><subject>Magnetic fields</subject><subject>Palladium</subject><subject>Physics</subject><subject>Reaction kinetics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdks9u1DAQxgMqEkvLgTewxKVFpPjPJllzqyooK1XqBc6RY0-aqRLb2F6q5cQ79A37JDi7K6EiTkiWLM_85ptP4ymKN4yeM1qLD9U5pUzIJXteLBhdybKpJT0qFpRyVsqa1i-LVzHe0Uw1fLl4dnKFyiYyqVsLCTXpEUZDoO9Bp0jQEuOsC4-_HpTW4JMLJAVUJn4kN5akAYgeVLgFEsGroBI6S5Q1JIB2U4d2HzFbqybUO725PGzH_LaQZa3yQxrUCBYM4oQGDg3IPaaBdBhLg1sfwqzlSq_GURncTKfr9dl74l3wgzM4QbbyL2D28iSUW-6KtlmQ5NrkItiICX9CiCfFi16NEV4f7uPi2-dPXy-_lNc3V-vLi-tSi5qmEuSq0wYk51qCYFI3QndK9CuhGa80rSoFy5wC2TVS5DFD1wmhKs5WmitWi-PidK_rg_u-gZjaCaOGbNOC28SWL0U-Iktn9O1f6J3bBJvdZYpLSRspZ-psT-ngYgzQtz7glOfcMtrOe9FW7WEvMvtuz0aNafc__wf_cOEP2HrTi9_RONBz</recordid><startdate>20200807</startdate><enddate>20200807</enddate><creator>Riese, Stefan</creator><creator>Brand, Jessica S.</creator><creator>Mims, David</creator><creator>Holzapfel, Marco</creator><creator>Lukzen, Nikita N.</creator><creator>Steiner, Ulrich E.</creator><creator>Lambert, Christoph</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5176-0948</orcidid><orcidid>https://orcid.org/0000-0002-9652-9165</orcidid></search><sort><creationdate>20200807</creationdate><title>Giant magnetic field effects in donor–acceptor triads: On the charge separation and recombination dynamics in triarylamine–naphthalenediimide triads with bis-diyprrinato-palladium(II), porphodimethenato-palladium(II), and palladium(II)–porphyrin photosensitizers</title><author>Riese, Stefan ; Brand, Jessica S. ; Mims, David ; Holzapfel, Marco ; Lukzen, Nikita N. ; Steiner, Ulrich E. ; Lambert, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-e98bcde922c9e319c73cba3f83c125c055ae4c9ee9b793724ebb33a5218c2a163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic energy levels</topic><topic>Decay rate</topic><topic>Electron spin</topic><topic>Electron transfer</topic><topic>Ground state</topic><topic>Magnetic fields</topic><topic>Palladium</topic><topic>Physics</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riese, Stefan</creatorcontrib><creatorcontrib>Brand, Jessica S.</creatorcontrib><creatorcontrib>Mims, David</creatorcontrib><creatorcontrib>Holzapfel, Marco</creatorcontrib><creatorcontrib>Lukzen, Nikita N.</creatorcontrib><creatorcontrib>Steiner, Ulrich E.</creatorcontrib><creatorcontrib>Lambert, Christoph</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riese, Stefan</au><au>Brand, Jessica S.</au><au>Mims, David</au><au>Holzapfel, Marco</au><au>Lukzen, Nikita N.</au><au>Steiner, Ulrich E.</au><au>Lambert, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant magnetic field effects in donor–acceptor triads: On the charge separation and recombination dynamics in triarylamine–naphthalenediimide triads with bis-diyprrinato-palladium(II), porphodimethenato-palladium(II), and palladium(II)–porphyrin photosensitizers</atitle><jtitle>The Journal of chemical physics</jtitle><date>2020-08-07</date><risdate>2020</risdate><volume>153</volume><issue>5</issue><spage>054306</spage><epage>054306</epage><pages>054306-054306</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>A series of triads consisting of a triarylamine donor, a naphthalenediimide acceptor, and a palladium photosensitizer bridge was investigated for the photoinduced electron transfer processes and the spin chemistry involved. In this series, the ligand in the palladium photosensitizer was varied from bis-dipyrrinato to porphodimethenato and to a porphyrin. With the porphyrin photosensitizer, no charge separated state could be reached. This is caused by the direct relaxation of the excited photosensitizer to the ground state by intersystem crossing. The bis-dipyrrinato-palladium photosensitizer gave only a little yield (7%) of the charge separated state, which is due to the population of a metal centered triplet state and a concomitant geometrical rearrangement to a disphenoidal coordination sphere. This state relaxes rapidly to the ground state. In contrast, in the porphodimethenato-palladium triads, a long lived (μs to ms) charge separated state could be generated in high quantum yields (66%–74%) because, here, the population of a triplet metal centered state is inhibited by geometrical constraints. The magnetic field dependent transient absorption measurement of one of the porphodimethenato triads revealed a giant magnetic field effect by a factor of 26 on the signal amplitude of the charge separated state. This is the consequence of a magnetic field dependent triplet–singlet interconversion that inhibits the fast decay of the charge separated triplet state through the singlet recombination channel. A systematic comparative analysis of the spin-dependent kinetics in terms of three classical and one fully quantum theoretical methods is provided, shedding light on the pros and cons of each of them.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0013941</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5176-0948</orcidid><orcidid>https://orcid.org/0000-0002-9652-9165</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-08, Vol.153 (5), p.054306-054306
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2429907999
source AIP Journals Complete; Alma/SFX Local Collection
subjects Atomic energy levels
Decay rate
Electron spin
Electron transfer
Ground state
Magnetic fields
Palladium
Physics
Reaction kinetics
title Giant magnetic field effects in donor–acceptor triads: On the charge separation and recombination dynamics in triarylamine–naphthalenediimide triads with bis-diyprrinato-palladium(II), porphodimethenato-palladium(II), and palladium(II)–porphyrin photosensitizers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20magnetic%20field%20effects%20in%20donor%E2%80%93acceptor%20triads:%20On%20the%20charge%20separation%20and%20recombination%20dynamics%20in%20triarylamine%E2%80%93naphthalenediimide%20triads%20with%20bis-diyprrinato-palladium(II),%20porphodimethenato-palladium(II),%20and%20palladium(II)%E2%80%93porphyrin%20photosensitizers&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Riese,%20Stefan&rft.date=2020-08-07&rft.volume=153&rft.issue=5&rft.spage=054306&rft.epage=054306&rft.pages=054306-054306&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0013941&rft_dat=%3Cproquest_scita%3E2429907999%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429907999&rft_id=info:pmid/&rfr_iscdi=true