Boosting Deep Open World Recognition by Clustering
While convolutional neural networks have brought significant advances in robot vision, their ability is often limited to closed world scenarios, where the number of semantic concepts to be recognized is determined by the available training set. Since it is practically impossible to capture all possi...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2020-10, Vol.5 (4), p.5985-5992 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5992 |
---|---|
container_issue | 4 |
container_start_page | 5985 |
container_title | IEEE robotics and automation letters |
container_volume | 5 |
creator | Fontanel, Dario Cermelli, Fabio Mancini, Massimiliano Bulo, Samuel Rota Ricci, Elisa Caputo, Barbara |
description | While convolutional neural networks have brought significant advances in robot vision, their ability is often limited to closed world scenarios, where the number of semantic concepts to be recognized is determined by the available training set. Since it is practically impossible to capture all possible semantic concepts present in the real world in a single training set, we need to break the closed world assumption, equipping our robot with the capability to act in an open world . To provide such ability, a robot vision system should be able to (i) identify whether an instance does not belong to the set of known categories (i.e., open set recognition), and (ii) extend its knowledge to learn new classes over time (i.e., incremental learning). In this work, we show how we can boost the performance of deep open world recognition algorithms by means of a new loss formulation enforcing a global to local clustering of class-specific features. In particular, a first loss term, i.e., global clustering , forces the network to map samples closer to the class centroid they belong to while the second one, local clustering , shapes the representation space in such a way that samples of the same class get closer in the representation space while pushing away neighbours belonging to other classes. Moreover, we propose a strategy to learn class-specific rejection thresholds, instead of heuristically estimating a single global threshold, as in previous works. Experiments on three benchmarks show the effectiveness of our approach. |
doi_str_mv | 10.1109/LRA.2020.3010753 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2429903792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9145605</ieee_id><sourcerecordid>2429903792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-69838d5a0d35d17a49d9c6f3b784395de07877fde145938b3a4afe7a9ba5c433</originalsourceid><addsrcrecordid>eNpNkD1rwzAQhkVpoSHNXuhi6Oz0pLMsa0zTTwgEQqCjkO1zcEgtV7KH_PsqJJROd8Pz3ns8jN1zmHMO-mm1WcwFCJgjcFASr9hEoFIpqjy__rffslkIewDgUijUcsLEs3NhaLtd8kLUJ-ueuuTL-UOdbKhyu64dWtcl5TFZHsYwkI_kHbtp7CHQ7DKnbPv2ul1-pKv1--dysUorofmQ5rrAopYWapQ1VzbTta7yBktVZLG6JlCFUk1NPJMaixJtZhtSVpdWVhnilD2ez_be_YwUBrN3o-9ioxGZ0BpQaREpOFOVdyF4akzv22_rj4aDObkx0Y05uTEXNzHycI60RPSH6_hGDhJ_AW9kXbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429903792</pqid></control><display><type>article</type><title>Boosting Deep Open World Recognition by Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Fontanel, Dario ; Cermelli, Fabio ; Mancini, Massimiliano ; Bulo, Samuel Rota ; Ricci, Elisa ; Caputo, Barbara</creator><creatorcontrib>Fontanel, Dario ; Cermelli, Fabio ; Mancini, Massimiliano ; Bulo, Samuel Rota ; Ricci, Elisa ; Caputo, Barbara</creatorcontrib><description>While convolutional neural networks have brought significant advances in robot vision, their ability is often limited to closed world scenarios, where the number of semantic concepts to be recognized is determined by the available training set. Since it is practically impossible to capture all possible semantic concepts present in the real world in a single training set, we need to break the closed world assumption, equipping our robot with the capability to act in an open world . To provide such ability, a robot vision system should be able to (i) identify whether an instance does not belong to the set of known categories (i.e., open set recognition), and (ii) extend its knowledge to learn new classes over time (i.e., incremental learning). In this work, we show how we can boost the performance of deep open world recognition algorithms by means of a new loss formulation enforcing a global to local clustering of class-specific features. In particular, a first loss term, i.e., global clustering , forces the network to map samples closer to the class centroid they belong to while the second one, local clustering , shapes the representation space in such a way that samples of the same class get closer in the representation space while pushing away neighbours belonging to other classes. Moreover, we propose a strategy to learn class-specific rejection thresholds, instead of heuristically estimating a single global threshold, as in previous works. Experiments on three benchmarks show the effectiveness of our approach.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2020.3010753</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Centroids ; Clustering ; Deep Learning for visual perception ; Feature extraction ; Machine vision ; Neural networks ; Recognition ; Representations ; Robot vision systems ; Robots ; Semantics ; Training ; Vision systems ; visual learning ; Visualization</subject><ispartof>IEEE robotics and automation letters, 2020-10, Vol.5 (4), p.5985-5992</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-69838d5a0d35d17a49d9c6f3b784395de07877fde145938b3a4afe7a9ba5c433</citedby><cites>FETCH-LOGICAL-c291t-69838d5a0d35d17a49d9c6f3b784395de07877fde145938b3a4afe7a9ba5c433</cites><orcidid>0000-0002-2372-1367 ; 0000-0001-7169-0158 ; 0000-0002-8644-8281 ; 0000-0001-8595-9955 ; 0000-0001-7077-697X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9145605$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9145605$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fontanel, Dario</creatorcontrib><creatorcontrib>Cermelli, Fabio</creatorcontrib><creatorcontrib>Mancini, Massimiliano</creatorcontrib><creatorcontrib>Bulo, Samuel Rota</creatorcontrib><creatorcontrib>Ricci, Elisa</creatorcontrib><creatorcontrib>Caputo, Barbara</creatorcontrib><title>Boosting Deep Open World Recognition by Clustering</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>While convolutional neural networks have brought significant advances in robot vision, their ability is often limited to closed world scenarios, where the number of semantic concepts to be recognized is determined by the available training set. Since it is practically impossible to capture all possible semantic concepts present in the real world in a single training set, we need to break the closed world assumption, equipping our robot with the capability to act in an open world . To provide such ability, a robot vision system should be able to (i) identify whether an instance does not belong to the set of known categories (i.e., open set recognition), and (ii) extend its knowledge to learn new classes over time (i.e., incremental learning). In this work, we show how we can boost the performance of deep open world recognition algorithms by means of a new loss formulation enforcing a global to local clustering of class-specific features. In particular, a first loss term, i.e., global clustering , forces the network to map samples closer to the class centroid they belong to while the second one, local clustering , shapes the representation space in such a way that samples of the same class get closer in the representation space while pushing away neighbours belonging to other classes. Moreover, we propose a strategy to learn class-specific rejection thresholds, instead of heuristically estimating a single global threshold, as in previous works. Experiments on three benchmarks show the effectiveness of our approach.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Centroids</subject><subject>Clustering</subject><subject>Deep Learning for visual perception</subject><subject>Feature extraction</subject><subject>Machine vision</subject><subject>Neural networks</subject><subject>Recognition</subject><subject>Representations</subject><subject>Robot vision systems</subject><subject>Robots</subject><subject>Semantics</subject><subject>Training</subject><subject>Vision systems</subject><subject>visual learning</subject><subject>Visualization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1rwzAQhkVpoSHNXuhi6Oz0pLMsa0zTTwgEQqCjkO1zcEgtV7KH_PsqJJROd8Pz3ns8jN1zmHMO-mm1WcwFCJgjcFASr9hEoFIpqjy__rffslkIewDgUijUcsLEs3NhaLtd8kLUJ-ueuuTL-UOdbKhyu64dWtcl5TFZHsYwkI_kHbtp7CHQ7DKnbPv2ul1-pKv1--dysUorofmQ5rrAopYWapQ1VzbTta7yBktVZLG6JlCFUk1NPJMaixJtZhtSVpdWVhnilD2ez_be_YwUBrN3o-9ioxGZ0BpQaREpOFOVdyF4akzv22_rj4aDObkx0Y05uTEXNzHycI60RPSH6_hGDhJ_AW9kXbg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Fontanel, Dario</creator><creator>Cermelli, Fabio</creator><creator>Mancini, Massimiliano</creator><creator>Bulo, Samuel Rota</creator><creator>Ricci, Elisa</creator><creator>Caputo, Barbara</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2372-1367</orcidid><orcidid>https://orcid.org/0000-0001-7169-0158</orcidid><orcidid>https://orcid.org/0000-0002-8644-8281</orcidid><orcidid>https://orcid.org/0000-0001-8595-9955</orcidid><orcidid>https://orcid.org/0000-0001-7077-697X</orcidid></search><sort><creationdate>20201001</creationdate><title>Boosting Deep Open World Recognition by Clustering</title><author>Fontanel, Dario ; Cermelli, Fabio ; Mancini, Massimiliano ; Bulo, Samuel Rota ; Ricci, Elisa ; Caputo, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-69838d5a0d35d17a49d9c6f3b784395de07877fde145938b3a4afe7a9ba5c433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Centroids</topic><topic>Clustering</topic><topic>Deep Learning for visual perception</topic><topic>Feature extraction</topic><topic>Machine vision</topic><topic>Neural networks</topic><topic>Recognition</topic><topic>Representations</topic><topic>Robot vision systems</topic><topic>Robots</topic><topic>Semantics</topic><topic>Training</topic><topic>Vision systems</topic><topic>visual learning</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fontanel, Dario</creatorcontrib><creatorcontrib>Cermelli, Fabio</creatorcontrib><creatorcontrib>Mancini, Massimiliano</creatorcontrib><creatorcontrib>Bulo, Samuel Rota</creatorcontrib><creatorcontrib>Ricci, Elisa</creatorcontrib><creatorcontrib>Caputo, Barbara</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fontanel, Dario</au><au>Cermelli, Fabio</au><au>Mancini, Massimiliano</au><au>Bulo, Samuel Rota</au><au>Ricci, Elisa</au><au>Caputo, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Deep Open World Recognition by Clustering</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>5</volume><issue>4</issue><spage>5985</spage><epage>5992</epage><pages>5985-5992</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>While convolutional neural networks have brought significant advances in robot vision, their ability is often limited to closed world scenarios, where the number of semantic concepts to be recognized is determined by the available training set. Since it is practically impossible to capture all possible semantic concepts present in the real world in a single training set, we need to break the closed world assumption, equipping our robot with the capability to act in an open world . To provide such ability, a robot vision system should be able to (i) identify whether an instance does not belong to the set of known categories (i.e., open set recognition), and (ii) extend its knowledge to learn new classes over time (i.e., incremental learning). In this work, we show how we can boost the performance of deep open world recognition algorithms by means of a new loss formulation enforcing a global to local clustering of class-specific features. In particular, a first loss term, i.e., global clustering , forces the network to map samples closer to the class centroid they belong to while the second one, local clustering , shapes the representation space in such a way that samples of the same class get closer in the representation space while pushing away neighbours belonging to other classes. Moreover, we propose a strategy to learn class-specific rejection thresholds, instead of heuristically estimating a single global threshold, as in previous works. Experiments on three benchmarks show the effectiveness of our approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2020.3010753</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2372-1367</orcidid><orcidid>https://orcid.org/0000-0001-7169-0158</orcidid><orcidid>https://orcid.org/0000-0002-8644-8281</orcidid><orcidid>https://orcid.org/0000-0001-8595-9955</orcidid><orcidid>https://orcid.org/0000-0001-7077-697X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2020-10, Vol.5 (4), p.5985-5992 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2429903792 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Centroids Clustering Deep Learning for visual perception Feature extraction Machine vision Neural networks Recognition Representations Robot vision systems Robots Semantics Training Vision systems visual learning Visualization |
title | Boosting Deep Open World Recognition by Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Deep%20Open%20World%20Recognition%20by%20Clustering&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Fontanel,%20Dario&rft.date=2020-10-01&rft.volume=5&rft.issue=4&rft.spage=5985&rft.epage=5992&rft.pages=5985-5992&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2020.3010753&rft_dat=%3Cproquest_RIE%3E2429903792%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429903792&rft_id=info:pmid/&rft_ieee_id=9145605&rfr_iscdi=true |