The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and benchmark exercises
The heat-balance integral method of Goodman has been thoroughly analyzed in the case of a parabolic profile with unspecified exponent depending on the boundary condition imposed. That the classical Goodman's boundary conditions defining the time-dependent coefficients of the prescribed temperat...
Gespeichert in:
Veröffentlicht in: | Thermal science 2009, Vol.13 (2), p.27-48 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | 2 |
container_start_page | 27 |
container_title | Thermal science |
container_volume | 13 |
creator | Jordan, Hristov |
description | The heat-balance integral method of Goodman has been thoroughly analyzed in the case of a parabolic profile with unspecified exponent depending on the boundary condition imposed. That the classical Goodman's boundary conditions defining the time-dependent coefficients of the prescribed temperature profile do not work efficiently at the front of the thermal layers if the specific parabolic profile at issue is employed. Additional constraints based on physical assumption enhance the heat-balance integral method and form a robust algorithm defining the parabola exponent. The method has been compared by results provided by the Veinik's method that is by far different from the Goodman's idea but also assume formation of thermal layer penetrating the heat body. The method has been demonstrated through detailed solutions of 4 1-D heat-conduction problems in Cartesian co-ordinates including a spherical problem (through change of variables) and over-specified boundary condition at the face of the thermal layer. |
doi_str_mv | 10.2298/TSCI0902027H |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429878880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429878880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-376824dd07badfb17ec52ccbd987557eb2824b7d7e5e2dece02d98f9a1d184823</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWw8QMssRJw7CR22KoKaKVKDIQ58scLcUmdYLuC_nuMysD0hnvv09FB6Dond5TW4r55Xa5JTSihfHWCZpSxIuN5xU7RjLCyyGrBqnN0EcKWkKoSgs9QaHrAPciYKTlIpwFbF-HdywHvIPajweqAJZ6kl2ocrMaTHzs7AP6yscd7FybQtrNgMHxPowMXH_DCyeEQbMDSpTk43e-k_0gF8NoGCJforJNDgKu_O0dvT4_NcpVtXp7Xy8Um04zkMWO8ErQwhnAlTadyDrqkWitTC16WHBRNseKGQwnUgAZCU9TVMje5KARlc3Rz_JuYP_cQYrsd9z7BhZYWyRcXQpDUuj22tB9D8NC1k7cJ-NDmpP3V2v7Xyn4A_4Bsng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429878880</pqid></control><display><type>article</type><title>The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and benchmark exercises</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Jordan, Hristov</creator><creatorcontrib>Jordan, Hristov</creatorcontrib><description>The heat-balance integral method of Goodman has been thoroughly analyzed in the case of a parabolic profile with unspecified exponent depending on the boundary condition imposed. That the classical Goodman's boundary conditions defining the time-dependent coefficients of the prescribed temperature profile do not work efficiently at the front of the thermal layers if the specific parabolic profile at issue is employed. Additional constraints based on physical assumption enhance the heat-balance integral method and form a robust algorithm defining the parabola exponent. The method has been compared by results provided by the Veinik's method that is by far different from the Goodman's idea but also assume formation of thermal layer penetrating the heat body. The method has been demonstrated through detailed solutions of 4 1-D heat-conduction problems in Cartesian co-ordinates including a spherical problem (through change of variables) and over-specified boundary condition at the face of the thermal layer.</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI0902027H</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Algorithms ; Boundary conditions ; Cartesian coordinates ; Conduction heating ; Integrals ; Temperature profiles ; Time dependence</subject><ispartof>Thermal science, 2009, Vol.13 (2), p.27-48</ispartof><rights>2009. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-376824dd07badfb17ec52ccbd987557eb2824b7d7e5e2dece02d98f9a1d184823</citedby><cites>FETCH-LOGICAL-c301t-376824dd07badfb17ec52ccbd987557eb2824b7d7e5e2dece02d98f9a1d184823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Jordan, Hristov</creatorcontrib><title>The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and benchmark exercises</title><title>Thermal science</title><description>The heat-balance integral method of Goodman has been thoroughly analyzed in the case of a parabolic profile with unspecified exponent depending on the boundary condition imposed. That the classical Goodman's boundary conditions defining the time-dependent coefficients of the prescribed temperature profile do not work efficiently at the front of the thermal layers if the specific parabolic profile at issue is employed. Additional constraints based on physical assumption enhance the heat-balance integral method and form a robust algorithm defining the parabola exponent. The method has been compared by results provided by the Veinik's method that is by far different from the Goodman's idea but also assume formation of thermal layer penetrating the heat body. The method has been demonstrated through detailed solutions of 4 1-D heat-conduction problems in Cartesian co-ordinates including a spherical problem (through change of variables) and over-specified boundary condition at the face of the thermal layer.</description><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Cartesian coordinates</subject><subject>Conduction heating</subject><subject>Integrals</subject><subject>Temperature profiles</subject><subject>Time dependence</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkD1PwzAURS0EEqWw8QMssRJw7CR22KoKaKVKDIQ58scLcUmdYLuC_nuMysD0hnvv09FB6Dond5TW4r55Xa5JTSihfHWCZpSxIuN5xU7RjLCyyGrBqnN0EcKWkKoSgs9QaHrAPciYKTlIpwFbF-HdywHvIPajweqAJZ6kl2ocrMaTHzs7AP6yscd7FybQtrNgMHxPowMXH_DCyeEQbMDSpTk43e-k_0gF8NoGCJforJNDgKu_O0dvT4_NcpVtXp7Xy8Um04zkMWO8ErQwhnAlTadyDrqkWitTC16WHBRNseKGQwnUgAZCU9TVMje5KARlc3Rz_JuYP_cQYrsd9z7BhZYWyRcXQpDUuj22tB9D8NC1k7cJ-NDmpP3V2v7Xyn4A_4Bsng</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Jordan, Hristov</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2009</creationdate><title>The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and benchmark exercises</title><author>Jordan, Hristov</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-376824dd07badfb17ec52ccbd987557eb2824b7d7e5e2dece02d98f9a1d184823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Cartesian coordinates</topic><topic>Conduction heating</topic><topic>Integrals</topic><topic>Temperature profiles</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jordan, Hristov</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jordan, Hristov</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and benchmark exercises</atitle><jtitle>Thermal science</jtitle><date>2009</date><risdate>2009</risdate><volume>13</volume><issue>2</issue><spage>27</spage><epage>48</epage><pages>27-48</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>The heat-balance integral method of Goodman has been thoroughly analyzed in the case of a parabolic profile with unspecified exponent depending on the boundary condition imposed. That the classical Goodman's boundary conditions defining the time-dependent coefficients of the prescribed temperature profile do not work efficiently at the front of the thermal layers if the specific parabolic profile at issue is employed. Additional constraints based on physical assumption enhance the heat-balance integral method and form a robust algorithm defining the parabola exponent. The method has been compared by results provided by the Veinik's method that is by far different from the Goodman's idea but also assume formation of thermal layer penetrating the heat body. The method has been demonstrated through detailed solutions of 4 1-D heat-conduction problems in Cartesian co-ordinates including a spherical problem (through change of variables) and over-specified boundary condition at the face of the thermal layer.</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI0902027H</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-9836 |
ispartof | Thermal science, 2009, Vol.13 (2), p.27-48 |
issn | 0354-9836 2334-7163 |
language | eng |
recordid | cdi_proquest_journals_2429878880 |
source | EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Algorithms Boundary conditions Cartesian coordinates Conduction heating Integrals Temperature profiles Time dependence |
title | The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and benchmark exercises |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20heat-balance%20integral%20method%20by%20a%20parabolic%20profile%20with%20unspecified%20exponent:%20Analysis%20and%20benchmark%20exercises&rft.jtitle=Thermal%20science&rft.au=Jordan,%20Hristov&rft.date=2009&rft.volume=13&rft.issue=2&rft.spage=27&rft.epage=48&rft.pages=27-48&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI0902027H&rft_dat=%3Cproquest_cross%3E2429878880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429878880&rft_id=info:pmid/&rfr_iscdi=true |