CFD analysis of helical nozzles effects on the energy separation in a vortex tube

In this article computational fluid dynamics (CFD) analysis of a three-dimensional steady state compressible and turbulent flow has been carried out through a vortex tube. The numerical models use the k-? turbulence model to simulate an axisymmetric computational domain along with periodic boundary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal science 2012, Vol.16 (1), p.151-166
Hauptverfasser: Pourmahmoud, Nader, Zadeh, Hassan, Moutaby, Omid, Bramo, Abdolreza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue 1
container_start_page 151
container_title Thermal science
container_volume 16
creator Pourmahmoud, Nader
Zadeh, Hassan
Moutaby, Omid
Bramo, Abdolreza
description In this article computational fluid dynamics (CFD) analysis of a three-dimensional steady state compressible and turbulent flow has been carried out through a vortex tube. The numerical models use the k-? turbulence model to simulate an axisymmetric computational domain along with periodic boundary conditions. The present research has focused on the energy separation and flow field behavior of a vortex tube by utilizing both straight and helical nozzles. Three kinds of nozzles set include of 3 and 6 straight and 3 helical nozzles have been investigated and their principal effects as cold temperature difference was compared. The studied vortex tubes dimensions are kept the same for all models. The numerical values of hot and cold outlet temperature differences indicate the considerable operating role of helical nozzles, even a few numbers of that in comparing with straight nozzles. The results showed that this type of nozzles causes to form higher swirl velocity in the vortex chamber than the straight one. To be presented numerical results in this paper are validated by both available experimental data and flow characteristics such as stagnation point situation and the location of maximum wall temperature as two important facts. These comparisons showed reasonable agreement. nema
doi_str_mv 10.2298/TSCI110531085P
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429867881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429867881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c152p-19ebd1dfadef3a12cc64b4735c0b0f539276173a703fc2aefc2b0f7aa4df15d03</originalsourceid><addsrcrecordid>eNpVkM1Lw0AUxBdRsFavnhc8p-5HNrs5SrS1UFCxnsPL5q1NiUncTcX2r3elXrzMg5nhwfwIueZsJkRubtevxZJzpiRnRj2fkImQMk00z-QpmTCp0iQ3MjsnFyFsGcsyY_SEvBTzewodtPvQBNo7usG2sdDSrj8cWgwUnUM7xqij4wYpdujf9zTgAB7GJrpNR4F-9X7EbzruKrwkZw7agFd_d0re5g_r4jFZPS2Wxd0qsVyJIeE5VjWvHdToJHBhbZZWqZbKsoo5JXOhM64laCadFYBRoq8B0tpxVTM5JTfHv4PvP3cYxnLb73xcEkqRRh6ZNobH1uzYsr4PwaMrB998gN-XnJW_2Mr_2OQPKUJggg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429867881</pqid></control><display><type>article</type><title>CFD analysis of helical nozzles effects on the energy separation in a vortex tube</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Pourmahmoud, Nader ; Zadeh, Hassan ; Moutaby, Omid ; Bramo, Abdolreza</creator><creatorcontrib>Pourmahmoud, Nader ; Zadeh, Hassan ; Moutaby, Omid ; Bramo, Abdolreza</creatorcontrib><description>In this article computational fluid dynamics (CFD) analysis of a three-dimensional steady state compressible and turbulent flow has been carried out through a vortex tube. The numerical models use the k-? turbulence model to simulate an axisymmetric computational domain along with periodic boundary conditions. The present research has focused on the energy separation and flow field behavior of a vortex tube by utilizing both straight and helical nozzles. Three kinds of nozzles set include of 3 and 6 straight and 3 helical nozzles have been investigated and their principal effects as cold temperature difference was compared. The studied vortex tubes dimensions are kept the same for all models. The numerical values of hot and cold outlet temperature differences indicate the considerable operating role of helical nozzles, even a few numbers of that in comparing with straight nozzles. The results showed that this type of nozzles causes to form higher swirl velocity in the vortex chamber than the straight one. To be presented numerical results in this paper are validated by both available experimental data and flow characteristics such as stagnation point situation and the location of maximum wall temperature as two important facts. These comparisons showed reasonable agreement. nema</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI110531085P</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Boundary conditions ; Compressibility ; Computational fluid dynamics ; Computer simulation ; Equilibrium flow ; Flow characteristics ; Fluid flow ; K-epsilon turbulence model ; Mathematical models ; Nozzles ; Numerical models ; Separation ; Stagnation point ; Temperature gradients ; Three dimensional analysis ; Tubes ; Turbulence models ; Turbulent flow ; Vortex chambers ; Vortices ; Wall temperature</subject><ispartof>Thermal science, 2012, Vol.16 (1), p.151-166</ispartof><rights>2012. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c152p-19ebd1dfadef3a12cc64b4735c0b0f539276173a703fc2aefc2b0f7aa4df15d03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Pourmahmoud, Nader</creatorcontrib><creatorcontrib>Zadeh, Hassan</creatorcontrib><creatorcontrib>Moutaby, Omid</creatorcontrib><creatorcontrib>Bramo, Abdolreza</creatorcontrib><title>CFD analysis of helical nozzles effects on the energy separation in a vortex tube</title><title>Thermal science</title><description>In this article computational fluid dynamics (CFD) analysis of a three-dimensional steady state compressible and turbulent flow has been carried out through a vortex tube. The numerical models use the k-? turbulence model to simulate an axisymmetric computational domain along with periodic boundary conditions. The present research has focused on the energy separation and flow field behavior of a vortex tube by utilizing both straight and helical nozzles. Three kinds of nozzles set include of 3 and 6 straight and 3 helical nozzles have been investigated and their principal effects as cold temperature difference was compared. The studied vortex tubes dimensions are kept the same for all models. The numerical values of hot and cold outlet temperature differences indicate the considerable operating role of helical nozzles, even a few numbers of that in comparing with straight nozzles. The results showed that this type of nozzles causes to form higher swirl velocity in the vortex chamber than the straight one. To be presented numerical results in this paper are validated by both available experimental data and flow characteristics such as stagnation point situation and the location of maximum wall temperature as two important facts. These comparisons showed reasonable agreement. nema</description><subject>Boundary conditions</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Equilibrium flow</subject><subject>Flow characteristics</subject><subject>Fluid flow</subject><subject>K-epsilon turbulence model</subject><subject>Mathematical models</subject><subject>Nozzles</subject><subject>Numerical models</subject><subject>Separation</subject><subject>Stagnation point</subject><subject>Temperature gradients</subject><subject>Three dimensional analysis</subject><subject>Tubes</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><subject>Vortex chambers</subject><subject>Vortices</subject><subject>Wall temperature</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkM1Lw0AUxBdRsFavnhc8p-5HNrs5SrS1UFCxnsPL5q1NiUncTcX2r3elXrzMg5nhwfwIueZsJkRubtevxZJzpiRnRj2fkImQMk00z-QpmTCp0iQ3MjsnFyFsGcsyY_SEvBTzewodtPvQBNo7usG2sdDSrj8cWgwUnUM7xqij4wYpdujf9zTgAB7GJrpNR4F-9X7EbzruKrwkZw7agFd_d0re5g_r4jFZPS2Wxd0qsVyJIeE5VjWvHdToJHBhbZZWqZbKsoo5JXOhM64laCadFYBRoq8B0tpxVTM5JTfHv4PvP3cYxnLb73xcEkqRRh6ZNobH1uzYsr4PwaMrB998gN-XnJW_2Mr_2OQPKUJggg</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Pourmahmoud, Nader</creator><creator>Zadeh, Hassan</creator><creator>Moutaby, Omid</creator><creator>Bramo, Abdolreza</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2012</creationdate><title>CFD analysis of helical nozzles effects on the energy separation in a vortex tube</title><author>Pourmahmoud, Nader ; Zadeh, Hassan ; Moutaby, Omid ; Bramo, Abdolreza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c152p-19ebd1dfadef3a12cc64b4735c0b0f539276173a703fc2aefc2b0f7aa4df15d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Boundary conditions</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Equilibrium flow</topic><topic>Flow characteristics</topic><topic>Fluid flow</topic><topic>K-epsilon turbulence model</topic><topic>Mathematical models</topic><topic>Nozzles</topic><topic>Numerical models</topic><topic>Separation</topic><topic>Stagnation point</topic><topic>Temperature gradients</topic><topic>Three dimensional analysis</topic><topic>Tubes</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><topic>Vortex chambers</topic><topic>Vortices</topic><topic>Wall temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pourmahmoud, Nader</creatorcontrib><creatorcontrib>Zadeh, Hassan</creatorcontrib><creatorcontrib>Moutaby, Omid</creatorcontrib><creatorcontrib>Bramo, Abdolreza</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pourmahmoud, Nader</au><au>Zadeh, Hassan</au><au>Moutaby, Omid</au><au>Bramo, Abdolreza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD analysis of helical nozzles effects on the energy separation in a vortex tube</atitle><jtitle>Thermal science</jtitle><date>2012</date><risdate>2012</risdate><volume>16</volume><issue>1</issue><spage>151</spage><epage>166</epage><pages>151-166</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>In this article computational fluid dynamics (CFD) analysis of a three-dimensional steady state compressible and turbulent flow has been carried out through a vortex tube. The numerical models use the k-? turbulence model to simulate an axisymmetric computational domain along with periodic boundary conditions. The present research has focused on the energy separation and flow field behavior of a vortex tube by utilizing both straight and helical nozzles. Three kinds of nozzles set include of 3 and 6 straight and 3 helical nozzles have been investigated and their principal effects as cold temperature difference was compared. The studied vortex tubes dimensions are kept the same for all models. The numerical values of hot and cold outlet temperature differences indicate the considerable operating role of helical nozzles, even a few numbers of that in comparing with straight nozzles. The results showed that this type of nozzles causes to form higher swirl velocity in the vortex chamber than the straight one. To be presented numerical results in this paper are validated by both available experimental data and flow characteristics such as stagnation point situation and the location of maximum wall temperature as two important facts. These comparisons showed reasonable agreement. nema</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI110531085P</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-9836
ispartof Thermal science, 2012, Vol.16 (1), p.151-166
issn 0354-9836
2334-7163
language eng
recordid cdi_proquest_journals_2429867881
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Boundary conditions
Compressibility
Computational fluid dynamics
Computer simulation
Equilibrium flow
Flow characteristics
Fluid flow
K-epsilon turbulence model
Mathematical models
Nozzles
Numerical models
Separation
Stagnation point
Temperature gradients
Three dimensional analysis
Tubes
Turbulence models
Turbulent flow
Vortex chambers
Vortices
Wall temperature
title CFD analysis of helical nozzles effects on the energy separation in a vortex tube
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20analysis%20of%20helical%20nozzles%20effects%20on%20the%20energy%20separation%20in%20a%20vortex%20tube&rft.jtitle=Thermal%20science&rft.au=Pourmahmoud,%20Nader&rft.date=2012&rft.volume=16&rft.issue=1&rft.spage=151&rft.epage=166&rft.pages=151-166&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI110531085P&rft_dat=%3Cproquest_cross%3E2429867881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429867881&rft_id=info:pmid/&rfr_iscdi=true